
Copyright © 2002-2021 by Drive Software Company. All Rights Reserved.

My Visual Database

My Visual Database

2 / 222

Table of contents

About My Visual Database ... 7
How it works? ... 8
Using DBMS MySQL .. 10
Database design ... 12

Introduction .. 12
Data types ... 13
Database schema ... 18

User interface designer ... 19
Introduction .. 19
Button actions .. 20

Introduction .. 21
Search .. 21
New record .. 23
Save record ... 23
Show record .. 24
Delete record ... 25
SQL query ... 26
Report .. 28

How to print a record ... 28
How to print a simple list .. 32
How to print a master-detail report .. 40
How to print a master-detail report with grouping 50

Report (SQL) ... 62
Show form .. 65
Close form .. 65
Open in Excel .. 66

User interface components .. 66
Label .. 67
Button ... 68
Edit .. 69

Filter ... 71
Memo ... 71
RichEdit .. 72
CheckBox .. 73
DateTimePicker .. 74

property Calendar .. 75
property Filter .. 75
property Format ... 76

Calendar ... 77
ComboBox .. 78

property ParentComboBox .. 79
TableGrid .. 80

property AppearanceOptions ... 82
property Options .. 82
property Settings .. 83
Column setting .. 85

Counter ... 87

My Visual Database

3 / 222

DBFile ... 88
CopyTo ... 89

DBImage ... 89
TreeView ... 90

property Settings .. 92
Map .. 94

MarkerIcon .. 96
MarkerInfoHTML .. 97
FormMarker ... 97

Image ... 97
PageControl ... 98
GroupBox .. 99
Panel .. 100
property Anchors ... 101

Access control .. 102
Introduction ... 102
Setting up Roles ... 102
Setting up the user interface .. 103
Setting up columns in the TableGrid component .. 105
Access Control to Information .. 106
Users creation .. 108

Web access via browser ... 110
Webgrid .. 110

Script .. 111
Introduction ... 112
Pascal language .. 113
Component Properties, Methods and Events .. 113

Form ... 113
BorderIcons ... 115
BorderStyle .. 115
TControlScrollBar ... 116

Label ... 117
Button ... 117

OnClick ... 119
Edit ... 120
Memo ... 122
RichEdit ... 124

AddHotPicture .. 127
AddHyperlink ... 127
AddNL .. 128
AddPicture ... 128
AddTab ... 129
AddTextNL .. 129
AppendRTFFromStream .. 130
AppendTextA ... 130
AppendText ... 131
AppendTextFromStreamA ... 131
AppendTextFromStream ... 132
GetSelectedImage ... 132
InsertHyperlink .. 133

My Visual Database

4 / 222

InsertPicture .. 133
InsertRTFFromStreamEd ... 134
InsertText .. 134
InsertTextEx .. 135
LoadRTFFromStream .. 135
LoadTextA ... 136
LoadText ... 136
LoadTextFromStreamA ... 137
LoadTextFromStream .. 137
SaveDocX .. 138
SaveDocXToStream .. 138
SaveHTML ... 139
SaveHTMLEx .. 139
SaveRTF .. 140
SaveRTFToStream .. 140
SaveTextToStreamA ... 141
SaveTextToStream ... 142
SearchText .. 142

CheckBox .. 143
DateTimePicker .. 145
Calendar .. 146

OnGetMonthBoldInfo .. 148
ComboBox ... 149
TableGrid .. 151

property dbLimit: Integer .. 154
property dbOffSet: Integer .. 155
property dbSQL: string ... 155
property dbPopupMenu: TPopupMenu .. 156
property Cell[x,y]: TCell .. 157
property Columns: TNxColumns .. 157
property Columns[i]: TNxCustomColumn .. 158

property Footer: TColumnFooter .. 159
property Header: TColumnHeader .. 160
property Options: TColumnOptions .. 160

property HorzScrollBar: TNxScrollBar .. 161
property VertScrollBar: TNxScrollBar .. 162
property Options: TGridOptions ... 162
property Row[i]: TRow ... 163
procedure BestFitColumns(BestFitMode: TBestFitMode = bfCells) 164
procedure BestFitRow(const Index: Integer) .. 164
procedure OnApplyEditText (Sender: TObject; ACol, ARow: Integer; var
Value: String) .. 165
procedure OnAfterEdit(Sender: TObject; ACol, ARow: Integer; Value: String)
165
procedure OnBeforeEdit(Sender: TObject; ACol, ARow: Integer; var Accept:
Boolean) .. 166
procedure OnCellClick(Sender: TObject; ACol, ARow: Integer) 166
procedure OnEditAccept(Sender: TObject; ACol, ARow: Integer; Value: String;
var Accept: Boolean) ... 167
procedure OnInputAccept(Sender: TObject; var Accept: Boolean) 167

My Visual Database

5 / 222

procedure OnRowMove(Sender: TObject; FromPos, ToPos: Integer; var
Accept: Boolean) .. 168

Counter ... 168
DBFile ... 170
DBImage ... 172
TreeView ... 173

property dbPopupMenu: TPopupMenu .. 177
property Cell[x,y]: TCell .. 178
property Columns: TNxColumns .. 178
property Columns[i]: TNxCustomColumn .. 179

property Footer: TColumnFooter .. 180
property Header: TColumnHeader .. 180
property Options: TColumnOptions .. 181

property HorzScrollBar: TNxScrollBar .. 182
property VertScrollBar: TNxScrollBar .. 183
property Options: TGridOptions ... 183
property Row[i]: TRow ... 184
procedure BestFitColumns(BestFitMode: TBestFitMode = bfCells) 185
procedure BestFitRow(const Index: Integer) .. 185
procedure OnCellClick(Sender: TObject; ACol, ARow: Integer) 186

Map .. 186
type TMarkerIconColor .. 190
type TErrorType ... 190
class TBounds .. 191
property Markers: TMakers .. 191
property Markers[i]: TMarker ... 192

property MapLabel: TMapLabel .. 193
property Polylines: TPolylines .. 194
property Polylines[i]: TPolylineItem .. 194

property Path: TPath .. 195
property Path[i]: TPathItem ... 196

property Polygons: TPolygons ... 196
property Polygons[i]: TPolygonItem ... 197
property MapOptions: TMapOptions ... 199
function GetElevation (Latitude, Longitude: Double): Boolean 199
function GetElevation2 (Path: TPath; ResultCount: Integer = 2): Boolean . 200
function DegreesToLonLat (StrLon, StrLat: String; var Lon, Lat: Double):
Boolean ... 200
function LoadGeoJSONPolyline (AFilename: string; AColor: TColor = clBlue;
Opacity: Integer = 255; AWidth: Integer = 2; Zoom: Boolean = True;
HoverColor: TColor = clBlue): string .. 201
function LoadGeoJSONPolygon .. 202
function OpenMarkerInfoWindowHtml (Id: Integer; HtmlText:String): Boolean
204
function ScreenShot (ImgType: TImgType): TGraphic 204

Image ... 205
property Picture: TPicture .. 206

PageControl ... 207
class TTabSheet ... 208

GroupBox .. 210

My Visual Database

6 / 222

Panel .. 211
Classes .. 213

TCanvas .. 213
TFont .. 215
TSizeConstraints ... 215
TStringList ... 216

Types .. 217
TColor .. 217
TCursor ... 219
TDateTime .. 220

Examples ... 220
Components .. 220

Examples with the Map component ... 220
Examples with the Calendar component .. 221
Examples with the TableGrid component ... 221
Examples with the TreeView component ... 221
Examples with the DBFile component .. 221
Examples with the DBImage component ... 221
Examples with the Button component ... 221
Examples with the Counter component ... 221

Database ... 221
Files .. 222
Internet ... 222
Report ... 222
Others ... 222

My Visual Database

7 / 222

About My Visual Database

A simple development environment allows you to create databases without the help of specialists or the
need for programming skills. MVD will enable you to create a self-contained database application that
operates on Windows XP, 7, 8 and 10. Databases can be simple telephone directories or basic accounting
systems.

The result of your work will be a full-fledged Windows application that does not require installation and third-
party components and can work even with a flash drive.

By default, the application you create uses a fairly simple but at the same time reliable SQLite DBMS.
As a rule, SQLite is intended for single-user work, but multiuser work in the local network through a shared
folder is also allowed.

If necessary, your application can use a MySQL database. This database is multi-user and perfectly suited
for working over the Internet.

For advanced users and programmers there are scripts (Object Pascal), with many built-in functions and
classes that will allow you to implement any functionality of your future application.

The figure below shows an example of what a ready-made application created in My Visual Database might
look like

My Visual Database

8 / 222

Other application examples can be found here: http://myvisualdatabase.com/products.html

Created with the Standard Edition of HelpNDoc: Free EBook and documentation generator

How it works?

Here you will learn the basic principles that are used when creating applications using My Visual Database

1. Creating a database structure.

Since your application will be designed to work with the database, you need to create a structure of your
database, which will store the information. Examples of this information may be: Clients, Payments, Visits,
etc.

http://myvisualdatabase.com/products.html
https://www.helpndoc.com

My Visual Database

9 / 222

To correctly create a database structure, you need to know the basic principles of database design. If you
have no experience in creating a database, I strongly recommend that you read the material on this link,
namely, the first chapter "1.Introduction".

For more information on how to create a database structure in My Visual Database, see "Database design".

2. Creating a user interface

In order to manage the data, you need to create a user interface. Using the user interface, you can: search,
print, calculate, create, edit or delete information from the database. The user interface is a set of forms and
components.

http://myvisualdatabase.com/download/Book_My_Visual_Database.pdf

My Visual Database

10 / 222

The first form is the main one (Form1), which is what you will see when you launch your application.

Usually, the first (main) form has components that allow you to find information and display it in a table.
Also on the form there are buttons to create a new record in the database or to edit/delete an existing one.
Creation or editing of records is performed on other forms. This user interface principle is recommended, but
nothing prevents you from using a different approach.

Next, you need to configure the components on the form. For buttons, you need to select an action, for
example: Search, Create record, Show record, Delete record, etc.
As a rule, it is enough to specify a table name and a field in the database for the components intended to
enter information, thus the component communicates with the database.

If the built-in actions for buttons are not enough for you, using scripts, you can implement almost any
functionality in the Object Pascal programming language, read more about it in the Scripts section.

Created with the Standard Edition of HelpNDoc: Create iPhone web-based documentation

Using DBMS MySQL

By default, the application you create uses a fairly simple but at the same time reliable SQLite database.
As a rule, SQLite is intended for single-user work, but multi-user work in the local network through a shared
folder is also acceptable.

If necessary, your application can use a MySQL database. This database is multi-user and perfectly suited
to work over the Internet, but its use requires that you have the basic skills to configure it.

DBMS MySQL is a free product that you can either install on your computer
(https://dev.mysql.com/downloads/mysql/), or purchase web hosting, where MySQL is available for use by
external applications, for example: https://www.hetzner.com/webhosting

By default, your project uses SQLite DBMS. How to switch your project to using MySQL is shown in the

https://www.helpndoc.com/feature-tour/iphone-website-generation
https://dev.mysql.com/downloads/mysql/
https://www.hetzner.com/webhosting

My Visual Database

11 / 222

figure below:

To connect your project to MySQL DBMS, you need to specify such data as: server address (Server), port
(Port), user name (User), password (Password) and database name (Database).

This documentation does not cover issues related to installation and configuration of MySQL DBMS, as its
use implies that you already have basic skills for its use. To get the initial skills for working with this DBMS,
you can easily find many sources on the Internet, such as the search query "intro to mysql".

My Visual Database

12 / 222

Created with the Standard Edition of HelpNDoc: Free EPub and documentation generator

Database design

Created with the Standard Edition of HelpNDoc: Easily create Qt Help files

Introduction

Important! If you are not familiar with the basic principles of database structure design, please read the
material on this link, namely, the first chapter "1.Introduction".

Creation of the database structure of your application is performed on the "Database tables" tab.

The database structure consists of tables and fields. To create a table, click the "New table" button. Click
the "New field" button to create a field in the table.

When you create a new field in the table, you must select its type.

https://www.helpndoc.com
https://www.helpndoc.com/feature-tour
http://myvisualdatabase.com/download/Book_My_Visual_Database.pdf

My Visual Database

13 / 222

More information about field types can be found in the "Data types" section.

Created with the Standard Edition of HelpNDoc: Easily create EBooks

Data types

When you create a new field in the table, you must select its type.

https://www.helpndoc.com/feature-tour

My Visual Database

14 / 222

The following types are available:

 Data type Description
 TEXT any text, such as name or company name
 INTEGER number without fractional part, e.g. the number of something in pieces
 REAL floating-point number, such as 3.14
 CURRENCY is the same as the "REAL" type, but allows you to specify the formatting, for example: $25.00
 BOOLEAN assumes Yes or no value
 DATE/TIME date and time, for example 12/31/2020 11:00:00AM
 DATE date only
 TIME time only
 IMAGE type allows you to save the image as directly in the database or save a link to an external image file on local PC
 FILE type allows you to save the file as directly in the database or save a link to an external file on local PC
 COUNTER automatically assigned a unique sequential value for the record
 Calculated field calculation field. Other table fields, SQL sub-queries and built-in functions can be used as arguments
 Relationship special field, for establishing links between tables

Depending on the data type, different settings are available for the field to be created.

Adjustment of fields with type: TEXT, INTEGER, REAL, BOOLEN, DATE/TIME, DATE, TIME, IMAGE,
FILE

My Visual Database

15 / 222

For the fields of these types, you can specify

Default value:
This value will be added to all records for this field, unless another value is specified.

For fields with DATA/TIME type, the following date-time format is used: YYYY-MM-DD HH:MM:SS, e.g.:
2020-01-31 12:00:00
For fields with DATA type, the following format is used: YYYY-MM-DD, e.g.: 2020-01-31
For fields with TIME type, the following format is used: HH:MM:SS, e.g.: 12:00:00

Not null:
This field will be mandatory. When creating and editing a record, if the value for this field is left blank, the
user will be notified of the necessity to fill it.

Setting up a field with the type: CURRENCY

My Visual Database

16 / 222

These settings allow you to set the currency format, such as unit designation, number of decimal places
and thousand separator. This way, the currency values in TableGrid and Edit components will look like this:

Calculated field

A special field type created as a result of calculations based on existing fields in the table.

For example, you have such fields as "price" and "quantity" to find out the full cost of the order, you need to
multiply the "price" by "quantity", you can do this using the calculated field.

My Visual Database

17 / 222

This way, you can see the result of the calculation in the TableGrid component as a usual column.

Also in the calculated field you can write an SQL query, which must be enclosed in brackets.

Relationship

To create external keys to other database tables, a special field type is used.

My Visual Database

18 / 222

Pay attention to the checkbox "Cascade delete". This option is necessary to support data integrity, for
example, if you delete a client from the database, then all orders, which belong to this client, will be
automatically deleted.

Important! If you are not familiar with the basic principles of database structure design, please read the
material on this link, namely, the first chapter "1.Introduction".

Created with the Standard Edition of HelpNDoc: Full-featured multi-format Help generator

Database schema

If your database already has many tables, it is easy to get confused in its structure. To avoid it, you can
always visualize its graphical representation.

http://myvisualdatabase.com/download/Book_My_Visual_Database.pdf
https://www.helpndoc.com/help-authoring-tool

My Visual Database

19 / 222

Created with the Standard Edition of HelpNDoc: Free help authoring tool

User interface designer

Created with the Standard Edition of HelpNDoc: Easy EBook and documentation generator

Introduction

To create an user interface, you have access to components that you can see on the toolbar.

 Name Description

 Label Label is a control that displays text on a form. Use Label to add text that the user can't edit to a form.

 Button Button is a push button control. Use Button to put a standard push button on a form. An important and frequently used component. For example, it may serve
to save a record to the database.

 TextBox It is used to enter numerical and text information. TextBox controls can also display text to the user.

 Memo Multiline edit boxes allow the user to enter more than one line of text.

 RichEdit Rich text edit controls let the user enter text that includes variation in font attributes, paragraph formatting information, images, tables and etc.

 ComboBox Allows you to select a value from a list.

https://www.helpndoc.com/help-authoring-tool
http://myvisualdatabase.com/help_ru/roles/roles.html#a5
https://www.helpndoc.com

My Visual Database

20 / 222

 CheckBox CheckBox represents a check box that can be on (checked) or off (unchecked). The user can check the box to select the option, or uncheck it to deselect the
option.

 DateTimePicker DateTimePicker is designed specifically for entering dates or/and times.

 DBImage Allows saving the image to a database.

 DBFile Allows saving a file to a database.

 Calendar Calendar is a component that displays the month calendar of the specified year.

 TableGrid Shows the database entries as a table.

 TreeView It serves for output and creation of data in a hierarchical form (tree structure).

 Counter Allows you to assign a unique number to records.

 Panel Decorative interface element. It is a container for other components.

 GroupBox Decorative interface element. It is a container for other components.

 PageControl PageControl is a set of pages used to make a multiple page dialog box.

 Image Use Image to display a graphical image on a form.

 Map Allows you to place an interactive geographical map of Google Maps on the form, with the ability to put on the map markers, lines and polygons.

Each component has many properties that allow you to customize it to your needs. You can change the
properties of a component in the "Object inspector" panel:

For convenience, the properties of all components are divided into two types: basic and additional. Basic
properties are available immediately when you select a component. To access additional properties, open
the Additional section, which is located at the very end of the list of properties. As a rule, Additional
properties are used less often than Basic properties.

Created with the Standard Edition of HelpNDoc: Easily create iPhone documentation

Button actions

https://www.helpndoc.com/feature-tour/iphone-website-generation

My Visual Database

21 / 222

Created with the Standard Edition of HelpNDoc: Free Web Help generator

Introduction

The button is an important visual component. You will need to select the action for the button, which will be
performed when the user clicks on it. There are 11 actions to choose from:

· Search
· New record
· Save record
· Show record
· Delete record
· SQL query
· Report
· Report (SQL)
· Show form
· Close form
· Open in Excel

In addition, a button can be linked to a script that will also be executed when you click on it, you can read
more about this in the Script section.

Created with the Standard Edition of HelpNDoc: Free CHM Help documentation generator

Search

Description

Allows you to configure the database search and display the search result in the selected TableGrid
component.

To set up a database search, you must set up the button consisting of 4 steps.

https://www.helpndoc.com
https://www.helpndoc.com

My Visual Database

22 / 222

1. Select the names of the components whose contents will participate in the search.
I.e. we select the components in which we will enter the search criteria, it can be textboxe, a combobox,
a date selection component, etc.
In this example, we have set up a search by client's Surname, Name, phone number and category.
Don't forget! All components in this list should have TableName and FieldName properties filled in.

2. Select the database table in which we will search for information.
In this example, we are looking for clients, so we select a database table with the name client

3. Choose which fields in the database table we need as a result of the search.

My Visual Database

23 / 222

We also give the names of the headers for the columns with the search result.
In the third column, you can specify a formula to calculate the total value in the footer and set the
alignment. More info.
If necessary, you can choose by which database field to sort the search result.

Pay attention to the line on the left side: #Auto-Number, you can use it to add a sequential numbering
to the search result. Using the #Checkbox line, you can add a checkbox column to the search result to
mark the necessary entries. This column is usually used in conjunction with the script.

4. Select the TableGrid component where the search result will be displayed.

Created with the Standard Edition of HelpNDoc: Full-featured EBook editor

New record

Description

It is used to call up a form that will be used to create a new record.

It is necessary to choose a form from the list that will be used to create a new record. Thus, when you click
on this button, the selected form will be shown on the screen.

The selected form must have a button with the action "Save record", otherwise you can not create a new
record in the database using this form.

Important! Usually the form for adding and editing a record is the same.

Important! Sometimes users choose "Show form" instead of "New record", this is an error, do not confuse,
because this action not only shows the form, but also prepares it to create a new record!

Created with the Standard Edition of HelpNDoc: Free help authoring environment

Save record

Description

Saving information from a form to a database.

https://www.helpndoc.com/create-epub-ebooks
https://www.helpndoc.com/help-authoring-tool

My Visual Database

24 / 222

1. Select the components, the information from which will be saved to the database.
Important! All components in this list should have the TableName and FieldName properties filled.

2. Select the database table to which we will save the information.
In this example we are saving information about the client, so we select the "clients" table.

Created with the Standard Edition of HelpNDoc: News and information about help authoring tools and
software

Show record

Description

It is used to call a form intended for editing (viewing) a record.

https://www.helpauthoringsoftware.com
https://www.helpauthoringsoftware.com

My Visual Database

25 / 222

1. Select the TableGrid component where we will select the record to edit (view).

2. Choose the form, which is intended for editing (viewing) the record.
Important! Usually the form for adding and editing a record is the same.

Created with the Standard Edition of HelpNDoc: Free Kindle producer

Delete record

Description

Delete the selected record from the database.

Select the TableGrid component in which we will select the record to be removed from the database.

Created with the Standard Edition of HelpNDoc: Create iPhone web-based documentation

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle
https://www.helpndoc.com/feature-tour/iphone-website-generation

My Visual Database

26 / 222

SQL query

Description

Allows you to enter an SQL query for execution and, if necessary, display the result of the query in a
TableGrid component.

Important! To work with this action, you must have knowledge of the SQL query language.

For SQL query you can also use UPDATE, INSERT, DELETE and any other keywords in the syntax.

Let's consider an example of an SQL query to search for records with the desired last name.

Notice in the SQL query the text of {edLastName}, where edLastName is the name of the component
(TextBox) in the current form, so the text from this component will be automatically inserted into the SQL
query.

My Visual Database

27 / 222

Let's consider one more example where we search for clients by their category.

Note in the SQL query for the text of {cbCategory}, where cbCategory is the name of the component
(ComboBox) in the current form, so the SQL query will automatically insert the identifier of the category
that is selected in the cbCategory component. Thus, will be found clients who belong to the category
specified in the cbCategory component.

In all these examples, in the query we added id (e.g.: SELECT lastname, fistname, id FROM...), which is
mandatory if we want to be able to edit or delete a record from a table component, in our case with the
name GridClients.

If you do not want to see the id value in a TableGrid component, enter a name for this column delete_col

You can use the keyword "$autoinc" to add sequence numbering to the TableGrid component where the query
result will be output. For example: SELECT "$autoinc", somefield FROM table

Please note the option: "Select the general database table". In case of complex SQL queries with sub-queries, you
need to select the main database table yourself.

My Visual Database

28 / 222

In cases when the TableGrid component was populated with data using SQL query, this component will not
be automatically updated when data changes in the database table. You can update data in the
component as follows: if Form1.TableGrid1.dbSQL <> '' then Form1.TableGrid1.dbSQLExecute;

Created with the Standard Edition of HelpNDoc: Easily create Web Help sites

Report

Description

Allows printing data from a database.

· How to print a record

· How to print a simple list

· How to print a master-detail report

· How to print a mater-detail report with grouping

Created with the Standard Edition of HelpNDoc: Easily create EBooks

How to print a record

Description

Allows printing data from a database.

The setting of the Report button is almost the same as the setting of the Search button, since in fact both
actions search the database and then display the search result, only in our case we will see the search
result when printing. After setting up the button, you need to call the report designer to create a template,
which will determine exactly how the document will look when printed, but everything in order.

As an example, we will print a simple client profile. It will look as shown in the picture:

https://www.helpndoc.com/feature-tour
https://www.helpndoc.com/feature-tour

My Visual Database

29 / 222

The setting of the "Report" button is shown in the figure below:

My Visual Database

30 / 222

Let's consider this setting in detail by steps:

1. Select the components involved in the search
The GridClients component is selected here, where we see all our clients, so only the client that was
selected in the GridClients component will be in the report. If there is no component in this list, then the
report will receive all data from the selected database table.

2. Select the database table for the query
We will print information about the client, respectively select the "clients" database table.

My Visual Database

31 / 222

3. The result
Select the table fields that we need in the report.

4. Select report file
Since the report template has yet to be created, this setting should select "Open report designer...".
A report template is a file that defines exactly what the report will look like, this file will be created in the
report designer and will be saved in the Report folder of your project.

To create a report template, you need to run the project
In the launched project, click this button with the report action, so you will open the report designer.

There is nothing complicated about creating a simple template; in the figure below you can see where the
objects were placed from and to. Do the same.

If everything is ready, go to the File > Preview (Ctrl+P) menu and you should see the report ready to print,
as was previously shown in the first picture in this section.
All you need to do is save the report file to the File > Save(Ctrl+S) menu. Name the report file, for example
"client profile" as shown in the figure below:

My Visual Database

32 / 222

The last step. Close the launched project and go back to the settings of this button.
In the settings item "4. Select a report template", instead of "Open report designer..." select the previously
saved report template "client profile.fr3" from the list as shown in the figure below:

Here we go. Now you can start the project again. After selecting the desired client in the GridClients
component, click on this button and you will see a report with the selected client data ready for printing.

Sometimes it is convenient to place this button for printing directly on the form of adding/editing a record.
In this case, leave the list blank in the button settings "1. Select the components involved in the search".
If the button with the "Report" action is placed on the form intended for adding/editing a record, it
automatically recognizes which one should be sent to print.

Documentation on working with the report designer can be found here https://www.fast-
report.com/public_download/UserManual-en.pdf

Created with the Standard Edition of HelpNDoc: Full-featured multi-format Help generator

How to print a simple list

https://www.fast-report.com/public_download/UserManual-en.pdf
https://www.fast-report.com/public_download/UserManual-en.pdf
https://www.helpndoc.com/help-authoring-tool

My Visual Database

33 / 222

Description

Allows printing data from a database.

The setting of the Report button is almost the same as the setting of the Search button, since in fact both
actions search the database and then display the search result, only in our case we will see the search
result when printing. After setting up the button, you need to call the report designer to create a template,
which will determine exactly how the document will look when printed, but everything in order.

As an example, we will print a simple list of clients. It will look as shown in the picture:

The setting of the "Report" button is shown in the figure below:

My Visual Database

34 / 222

Let's consider this setting in detail by steps:

1. Select the components involved in the search
This list is empty, so the report will contain data on all clients that are present in the database. If necessary,
you can add components that will only include clients that meet your criteria in the report.

2. Select the database table for the query
We will print information about the client, respectively select the "clients" database table.

3. The result

My Visual Database

35 / 222

Select the table fields that we need in the report.

4. Select report file
Since the report template has yet to be created, this setting should select "Open report designer...".
A report template is a file that defines exactly what the report will look like, this file will be created in the
report designer and will be saved in the Report folder of your project.
.

A nuance worth noting here. As you can see from the settings in p.2, to generate the result
we select fields from 2 different tables (clients and category), as a rule, in other programs
you need to write an SQL query, which manually specifies how one table, links to another
table and in what sequence.

The program My Visual Database tries to understand by itself how tables should be linked
to each other in order to get exactly the data you expect, thus saving you from the need to
learn the SQL query language.

Unfortunately, it is not always possible for the program to predict how tables should be
linked to get the data you would like to see. Such a situation can occur when you need to
link 3 or more tables and if there are no obvious links between them.

What should we do? On the "Database tables" tab, under each table, there is a checkbox
"The table is a dictionary". On this tab, you should note which tables in your project are
dictionaries. But how to understand which tables are dictionaries?

Examples of dictionary tables are the table containing country names, Statuses (Open,
Closed), Types (Legal Entity, Physical Entity), name with prices, etc.

That is, such tables, which, as a rule, are filled in first at the start of work with the database
and are not edited or edited rarely in the future.

In this case, the dictionary table can be referred to the "category" (client category), for this
table you need to check the "Table is a dictionary" box under these tables, so you will help
the program to link the tables correctly.

To create a report template, you need to run the project
In the launched project, click this button with the report action, so you will open the report designer.

This report will be a bit more complicated than the previous one, as it will use so-called blocks (or Band).
Blocks allow you to create almost any report structure. Some of them we will now get acquainted with.

To view all available blocks, click on the left icon , then you will see a menu as shown in the figure
below

My Visual Database

36 / 222

Let's start creating a report using blocks and find out what they are for.

From the menu shown in the figure above, select the Report Title block and this block will appear in the
report. The information in this block will be printed only on the first page of your report.

Place the logo and company information in this block. As a result, you should succeed as shown in the
figure below:

My Visual Database

37 / 222

You can skip this block if you do not need a title for your report.

Place the next Page Header block. The information placed in this block will be displayed on each printed
page (in case your report does not fit on one page).

In this block we will place the information about the client. We will also place the headers for the table which
will be located in the next block.
Place the text and data fields in this block as shown in the picture below:

The next block to be placed in the report is Master Data.

This block is designed to output information in the form of a table. With this block we will get a table where
we will see the list of clients.

Place this block in the report by selecting it from the menu. Before it appears in the report, you will see a
window with the title Select DataSet, in which you need to select the data source. Select a data source
from the list with the title Report and click OK.

In this block, place the database fields that you need in the table. As a result, you will see, as shown in the
figure below:

My Visual Database

38 / 222

And the last block that we will place in the report is PageFooter, this block will be printed on each page of
the report, we use it to numerate the pages.

Place the Page# system variable in this block from the right side of the report designer (Variables tab), just
drag and drop:

Now your report template is fully ready

My Visual Database

39 / 222

Go to the File > Preview menu or just press Ctrl+P to see what your report will look like.

Save the report template to the Report folder of your project, menu File > Save As... Give the file a name
such as "clients" as shown in the figure below:

My Visual Database

40 / 222

It remains to go back to the settings of this button and select this report template to use for printing:

Here we go. Now you can start the project again and click on this button, after which you will see a print-
ready report with a list of clients.

Documentation on working with the report designer can be found here https://www.fast-
report.com/public_download/UserManual-en.pdf

Created with the Standard Edition of HelpNDoc: Full-featured EPub generator

How to print a master-detail report

Description

Allows printing data from a database.

The setting of the Report button is almost the same as the setting of the Search button, since in fact both
actions search the database and then display the search result, only in our case we will see the search
result when printing. After setting up the button, you need to call the report designer to create a template,
which will determine exactly how the document will look when printed, but everything in order.

As an example, we will implement printing of payments from the client. It will look as shown in the picture
below:

https://www.fast-report.com/public_download/UserManual-en.pdf
https://www.fast-report.com/public_download/UserManual-en.pdf
https://www.helpndoc.com/create-epub-ebooks

My Visual Database

41 / 222

This type of reports is also called Master-Detail. In our example, the information about the client is Master
(parent record), and the list of payments of this client is Detail (child records).

Database structure, which is used for this example:

Select the "Report" action for this button, the setting of this button is shown in the figure below:

My Visual Database

42 / 222

Let's consider this setting in detail by steps:

1. Select the components involved in the search
The GridClients component is selected here, where we see all our clients, so only the client that was
selected in the GridClients component will be in the report. If there is no component in this list, then the
report will receive all data from the selected database table.

2. Select the database table for the query
We will print information about the client, respectively select the "clients" database table.

My Visual Database

43 / 222

3. The result
Select the table fields that we need in the report.

4. Select report file
Since the report template has yet to be created, this setting should select "Open report designer...".
A report template is a file that defines exactly what the report will look like, this file will be created in the
report designer and will be saved in the Report folder of your project.

A nuance worth noting here. As you can see from the settings in p.2, to generate the result
we select fields from 3 different tables (clients, category, payments), as a rule, in other
programs you need to write an SQL query, which manually specifies how one table, links to
another table and in what sequence.

The program My Visual Database tries to understand by itself how tables should be linked
to each other in order to get exactly the data you expect, thus saving you from the need to
learn the SQL query language.

Unfortunately, it is not always possible for the program to predict how tables should be
linked to get the data you would like to see. Such a situation can occur when you need to
link 3 or more tables and if there are no obvious links between them.

What should we do? On the "Database tables" tab, under each table, there is a checkbox
"The table is a dictionary". On this tab, you should note which tables in your project are
dictionaries. But how to understand which tables are dictionaries?

Examples of dictionary tables are the table containing country names, Statuses (Open,
Closed), Types (Legal Entity, Physical Entity), name with prices, etc.

That is, such tables, which, as a rule, are filled in first at the start of work with the database
and are not edited or edited rarely in the future.

In this case, the dictionary table can be referred to the "category" (client category), for this
table you need to check the "Table is a dictionary" box under these tables, so you will help
the program to link the tables correctly.

To create a report template, you need to run the project
In the launched project, click this button with the report action, so you will open the report designer.

This report will be a bit more complicated than the previous one, as it will use so-called blocks (or Band).
Blocks allow you to create almost any report structure. Some of them we will now get acquainted with.

To view all available blocks, click on the left icon , then you will see a menu as shown in the figure
below

My Visual Database

44 / 222

Let's start creating a report using blocks and find out what they are for.

From the menu shown in the figure above, select the Report Title block and this block will appear in the
report. The information in this block will be printed only on the first page of your report.

Place the logo and company information in this block. As a result, you should succeed as shown in the
figure below:

My Visual Database

45 / 222

You can skip this block if you do not need a title for your report.

Place the next Page Header block. The information placed in this block will be displayed on each printed
page (in case your report does not fit on one page).

In this block we will place the information about the client. We will also place the headers for the table which
will be located in the next block.
Place the text and data fields in this block as shown in the picture below:

The next block to be placed in the report is Master Data.

This block is designed to output information in the form of a table. With the help of this block we will get a
table where we will see all payments from this client.

Place this block in the report by selecting it from the menu. Before it appears in the report, you will see a
window with the title Select DataSet, in which you need to select the data source. Select a data source

My Visual Database

46 / 222

from the list with the title Report and click OK.

In this block, place the database fields that you need in the table. As a result, you will see, as shown in the
figure below:

Pay attention to the [Report. "payments.money"] field, which displays the price of the payment. Let's apply
monetary formatting to this field, i.e. add a separator of thousands and mandatory two decimal places. To do
this, right-click on this field and select "Display Format..." in the menu.

Choose the value Number in the Category list and 1,234.50 in the Format list, then click OK.

My Visual Database

47 / 222

Place the next Footer block. This block will print once at the end of the report, i.e. you will not see it on
every page of your report.
In this block you can calculate, for example, the total amount of all payments from the client.

To calculate the total amount, place the System text component in this block. Once you have placed
this component, a dialog box will appear and you need to configure it as shown in the figure below:

After that, your report template should look as shown in the figure below:

My Visual Database

48 / 222

You can also apply monetary formatting to this field, as described in the previous step.

And the last block that we will place in the report is Page Footer, this block will be printed on each page of
the report, we use it to numerate the pages.

Place the Page# system variable in this block from the right side of the report designer (Variables tab), just
drag and drop:

Now your report template is fully ready

My Visual Database

49 / 222

Go to the File > Preview menu or just press Ctrl+P to see what your report will look like.

Save the report template to the Report folder of your project, menu File > Save As... Give the file a name
such as "client payments" as shown in the figure below:

My Visual Database

50 / 222

It remains to go back to the settings of this button and select this report template to use for printing:

Here we go. Now you can start the project again. After selecting the desired client in the GridClients
component, click on this button and you'll see a printable report with the selected client data and its
payment list.

Sometimes it is convenient to place this button for printing directly on the form of adding/editing a record.
In this case, leave the list blank in the button settings "1. Select the components involved in the search".
If the button with the "Report" action is placed on the form intended for adding/editing a record, it
automatically recognizes which one should be sent to print.

Documentation on working with the report designer can be found here https://www.fast-
report.com/public_download/UserManual-en.pdf

Created with the Standard Edition of HelpNDoc: Qt Help documentation made easy

How to print a master-detail report with grouping

https://www.fast-report.com/public_download/UserManual-en.pdf
https://www.fast-report.com/public_download/UserManual-en.pdf
https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework

My Visual Database

51 / 222

Description

Allows printing data from a database.

The setting of the Report button is almost the same as the setting of the Search button, since in fact both
actions search the database and then display the search result, only in our case we will see the search
result when printing. After setting up the button, you need to call the report designer to create a template,
which will determine exactly how the document will look when printed, but everything in order.

As an example, we will implement printing of payments from the clients. It will look as shown in the picture
below:

This type of reports is also called Master-Detail with grouping. In our example, the client information is
Master (parent record), and the list of payments from these clients is Detail (child records), which are
grouped by client.

My Visual Database

52 / 222

Database structure, which is used for this example:

Select the "Report" action for this button, the setting of this button is shown in the figure below:

My Visual Database

53 / 222

Let's consider this setting in detail by steps:

1. Select the components involved in the search
This list is empty, so the report will contain data on all clients that are present in the database. If necessary,
you can add components that will only include clients that meet your criteria in the report.

2. Select the database table for the query

My Visual Database

54 / 222

We will print information about the client, respectively select the "clients" database table.

3. The result
Select the table fields that we need in the report.

4. Select report file
Since the report template has yet to be created, this setting should select "Open report designer...".
A report template is a file that defines exactly what the report will look like, this file will be created in the
report designer and will be saved in the Report folder of your project.

A nuance worth noting here. As you can see from the settings in p.2, to generate the result
we select fields from 3 different tables (clients, category, payments), as a rule, in other
programs you need to write an SQL query, which manually specifies how one table, links to
another table and in what sequence.

The program My Visual Database tries to understand by itself how tables should be linked
to each other in order to get exactly the data you expect, thus saving you from the need to
learn the SQL query language.

Unfortunately, it is not always possible for the program to predict how tables should be
linked to get the data you would like to see. Such a situation can occur when you need to
link 3 or more tables and if there are no obvious links between them.

What should we do? On the "Database tables" tab, under each table, there is a checkbox
"The table is a dictionary". On this tab, you should note which tables in your project are
dictionaries. But how to understand which tables are dictionaries?

Examples of dictionary tables are the table containing country names, Statuses (Open,
Closed), Types (Legal Entity, Physical Entity), name with prices, etc.

That is, such tables, which, as a rule, are filled in first at the start of work with the database
and are not edited or edited rarely in the future.

In this case, the dictionary table can be referred to the "category" (client category), for this
table you need to check the "Table is a dictionary" box under these tables, so you will help
the program to link the tables correctly.

To create a report template, you need to run the project
In the launched project, click this button with the report action, so you will open the report designer.

This report will be a bit more complicated than the previous one, as it will use so-called blocks (or Band).
Blocks allow you to create almost any report structure. Some of them we will now get acquainted with.

To view all available blocks, click on the left icon , then you will see a menu as shown in the figure
below

My Visual Database

55 / 222

Let's start creating a report using blocks and find out what they are for.

From the menu shown in the figure above, select the Report Title block and this block will appear in the
report. The information in this block will be printed only on the first page of your report.

Place the logo and company information in this block. As a result, you should succeed as shown in the
figure below:

My Visual Database

56 / 222

You can skip this block if you do not need a title for your report.

Place the next Group Header block. This block allows grouping the data. In our case we will group data by
client, so the MasterData block below will display only those data that belong to the current client.

When this block is placed, you need to specify by which field of the database table the data should be
grouped, in our case we have added the Client.id field specifically for this purpose. This field unambiguously
identifies the client, even if by mistake there are two clients with the same name in the database.

In this block we will place the information about the client. We will also place the headers for the table that
will be located in the next block.
Place the text and data fields in this block, as shown in the figure below:

My Visual Database

57 / 222

The next block to be placed in the report is Master Data. This block is designed to output information in the
form of a table.

Due to the fact that in the previous step we have placed the GroupHeader block, in the Master Data block
we will see data that belong to the current client, namely, data on the rented equipment.

Place this block in the report by selecting it from the menu. Before it appears in the report, you will see a
window with the title Select DataSet, in which you need to select the data source. Select a data source
with the Report title from the list and click OK.

In this block, place the database fields from which the table will be formed. As a result, you should succeed
as shown in the figure below:

My Visual Database

58 / 222

Pay attention to the [Report. "payments.money"] field, which displays the price of the payment. Let's apply
monetary formatting to this field, i.e. add a separator of thousands and mandatory two decimal places. To do
this, right-click on this field and select "Display Format..." in the menu.

Choose the value Number in the Category list and 1,234.50 in the Format list, then click OK.

Place the next Group Footer block. In this block you can calculate the total amount of payments from the
current client.

My Visual Database

59 / 222

To calculate the total amount, place the System text component in this block. Once you have placed
this component, a dialog box will appear and you need to configure it as shown in the figure below:

After that, your report template should look as shown in the figure below:

My Visual Database

60 / 222

You can also apply monetary formatting to this field, as described in the previous step.

And the last block that we will place in the report is Page Footer, this block will be printed on each page of
the report, we use it to numerate the pages.

Place the Page# system variable in this block from the right side of the report designer (Variables tab), just
drag and drop:

Now your report template is fully ready

My Visual Database

61 / 222

Go to the File > Preview menu or just press Ctrl+P to see what your report will look like.

Save the report template to the Report folder of your project, menu File > Save As... Give the file a name
such as "clients and payments" as shown in the figure below:

My Visual Database

62 / 222

It remains to go back to the settings of this button and select this report template to use for printing:

Here we go. Now you can start the project again. Click on this button and you will see the report ready to
print.

Documentation on working with the report designer can be found here https://www.fast-
report.com/public_download/UserManual-en.pdf

Created with the Standard Edition of HelpNDoc: Easily create EBooks

Report (SQL)

Description

Allows you to enter an SQL query for the report, and select the file defines the appearance and logic of the
report.

https://www.fast-report.com/public_download/UserManual-en.pdf
https://www.fast-report.com/public_download/UserManual-en.pdf
https://www.helpndoc.com/feature-tour

My Visual Database

63 / 222

*To work with reports, you must have knowledge of the query language SQL.

Let us consider the principle of report setup. Let's say you need to print out all clients with their all
payments.

1. Enter SQL query.

2. Since no template for this report has been created yet, let's leave the "Select report file" option as
shown in the above figure.

3. Launch the project and click the button to which the "Report (SQL)" action has just been assigned.

4. You will see a report designer, where you need to create a report template, and save it to the "Report"
folder, which is located in your project folder. You can read about how to work with the report
designer in the Report section. The example "How to print a master-detail report with grouping" is
most suitable for this SQL query. Also, detailed documentation on working with the report designer
can be found here https://www.fast-report.com/public_download/UserManual-en.pdf

5. After you have created a report template, go back to the Action button property and select your
template file from the "Select report file" list. Now when you click the button, you will see your finished
report.

https://www.fast-report.com/public_download/UserManual-en.pdf

My Visual Database

64 / 222

As you may have noticed, we have not yet used another option called "Select the Table Grid".

This option allows you to obtain a record ID for your SQL query from the required table component. Let's
say you need to print payments only from a client that you select from a TableGrid component. To do this,
you need to add: WHERE clients.id=$id to your SQL query, where $id is the record identifier from the
"clients" table, which will be substituted automatically.

The same result can be obtained if this button with the same settings is placed on the form for
adding/editing the client, where the $id value is automatically assigned an identifier of the current record.
In this case, leave the option "Select the Table Grid" empty.

Additionally

If necessary, you can insert data from visual components into SQL query, read more about it in section SQL
query.

Created with the Standard Edition of HelpNDoc: Qt Help documentation made easy

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework

My Visual Database

65 / 222

Show form

Description

It is used to call the specified form on the screen.

In this example, we call up a form that contains a list of categories to which the client can belong.

Do not use this action to create a new record.

Created with the Standard Edition of HelpNDoc: Generate Kindle eBooks with ease

Close form

Description

Closes the current form, i.e. the form on which this button is located.

This action does not need to be configured.
As a rule, this action is used for the Cancel button, not to save the record on the form, but simply to close it.

Created with the Standard Edition of HelpNDoc: Free help authoring environment

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle
https://www.helpndoc.com/help-authoring-tool

My Visual Database

66 / 222

Open in Excel

Description

Opens the contents of a TableGrid component in Excel or Open Office.

It is necessary to select the TableGrid component, the content of which you want to open in Excel, when
you click on the button.

Created with the Standard Edition of HelpNDoc: Free Web Help generator

User interface components

To create an interface, you have access to components that you can see on the toolbar.

 Название Описание

 Label Label is a control that displays text on a form.

 Button Button is a push button control. Use Button to put a standard push button on a form.

 TextBox TextBox is a single-line edit control.

 Memo Memo is a multiline edit control.

 RichEdit Rich text edit controls let the user enter text that includes variation in font attributes, paragraph formatting information and etc.

 ComboBox A ComboBox component is an edit box with a scrollable drop-down list attached to it.

 CheckBox CheckBox represents a check box that can be on (checked) or off (unchecked).

 DateTimePicker DateTimePicker is a component designed specifically for entering dates or/and times.

https://www.helpndoc.com

My Visual Database

67 / 222

 DBImage Allows saving the image to a database.

 DBFile Allows saving a file to a database.

 Calendar Calendar in which a user can select a date or range of dates.

 TableGrid Allows outputting the records from the database in the table form.

 TreeView TreeView displays a hierarchical list of item.

 Counter Allows you to assign a unique number to records.

 Panel Decorative interface element. It is a container for other components.

 GroupBox Decorative interface element. It is a container for other components.

 PageControl PageControl is a set of pages used to make a multiple page dialog box.

 Image Allows you to place any picture on the form.

 Map Allows you to place an interactive geographical map of Google Maps on the form, with the ability to put on the map markers, lines and polygons.

Each component has many properties that allow you to customize it to your needs. You can change the
properties of a component in the "Object inspector" panel:

For convenience, the properties of all components are divided into two types: basic and additional. Basic
properties are available immediately, when you select a component. To access additional properties, open
the Additional section, which is located at the very end of the list of properties. As a rule, Additional
properties are used less often than Basic properties.

Created with the Standard Edition of HelpNDoc: Easy EBook and documentation generator

Label

Description

Label is a control that displays text on a form. Use Label to add text that the user can't edit to a form.

https://www.helpndoc.com

My Visual Database

68 / 222

Component properties
 Property Description
 Caption Specify the text string that labels the control.
 Font → Color Specifies the font color to use when displaying the text.
 Font → Name Identifies the typeface of the font.
 Font → Size Specifies the height of the font in points.
 Font → Style Determines whether the font is normal, italic, underlined, bold, and so on.
 Name Specifies the name of the component.
 Left Specifies the horizontal coordinate of the left edge of a component relative to its parent.
 Top Specifies the Y coordinate of the upper-left corner of a control, relative to its parent or containing control in pixels.
 Width Specifies the horizontal size of the control in pixels.
 Height Specifies the vertical size of the control in pixels.
 Visible Specifies whether the component appears onscreen.
 Anchors Specifies how the control is anchored to its parent. More info.

Additional properties
 Property Description
 Alignment Controls the horizontal placement of the text within the label.
 AutoSize Determines whether the size of the label automatically resizes to accommodate the text.
 BiDiMode Specifies the bi-directional mode for the component.
 Color Specifies the background color of the component. This property works if the Transparent property = False
 Constraints Specifies the size constraints for the component. It makes sense when using the Anchors property.
 Cursor Specifies the image used to represent the mouse pointer when it passes into the region covered by the component.
 Enabled Controls whether the component responds to mouse and keyboard events.
 Hint Hint contains the text string that appears when the user moves the mouse over the component. The hint will be shown if the ShowHint property = True
 Layout Specifies the vertical placement of the text within the label.
 ShowHint Determines whether the control displays a Help Hint when the mouse pointer rests momentarily on the component. See also property Hint
 Transparent Specifies whether controls that sit below the label on a form can be seen through the label.
 WordWrap Specifies whether the label text wraps when it is too long for the width of the label.

Created with the Standard Edition of HelpNDoc: Easily create Qt Help files

Button

Description

https://www.helpndoc.com/feature-tour

My Visual Database

69 / 222

Button is a push button control. Use Button to put a standard push button on a form. An important and
frequently used component. For example, it may serve to save a record to the database.

Performs a predefined action or a script when you click on it.

Component properties
 Property Description
 Action Allows you to select a button action. More info.
 Caption Specifies the text string that labels the control.
 Font → Color Specifies the font color to use when displaying the text. Starting with Windows Vista, you cannot change the font color for a button.
 Font → Name Identifies the typeface of the font.
 Font → Size Specifies the height of the font in points.
 Font → Style Determines whether the font is normal, italic, underlined, bold, and so on.
 Icon Allows you to select an icon for the button.
 Name Specifies the name of the component.
 Left Specifies the horizontal coordinate of the left edge of a component relative to its parent.
 Top Specifies the Y coordinate of the upper-left corner of a control, relative to its parent or containing control in pixels.
 Width Specifies the horizontal size of the control in pixels.
 Height Specifies the vertical size of the control in pixels.
 Style Allows you to select the style of the button.
 TabOrder Indicates the position of the control in its parent's tab order.
 TabStop Determines if the user can tab to a control.
 Visible Specifies whether the component appears onscreen.
 Anchors Specifies how the control is anchored to its parent. More info.

Additional properties
 Property Description
 BiDiMode Specifies the bi-directional mode for the component.
 Cancel Determines whether the button will be automatically pressed when the Escape key is pressed.
 ComandLinkHint Text displayed as hint below button caption for Command Link. It makes sense if the Style button property = bsCommandLink
 Constraints Specifies the size constraints for the component. It makes sense when using the Anchors property.
 Cursor Specifies the image used to represent the mouse pointer when it passes into the region covered by the component.
 Enabled Controls whether the component responds to mouse and keyboard events.
 Hint Hint contains the text string that appears when the user moves the mouse over the component. The hint will be shown if the ShowHint property = True
 ImageAlignment Alignment of image on button. It makes sense if the icon is selected in the Icon property.
 ShowHint Determines whether the control displays a Help Hint when the mouse pointer rests momentarily on the component. See also property Hint
 WordWrap Specifies whether the button text wraps to fit the width of the component.

Created with the Standard Edition of HelpNDoc: Full-featured EPub generator

Edit

Description

It is used to enter numerical and text information. TextBox controls can also display text to the user. As a
rule, this component is assigned to a specific database field through the TableName and FieldName
properties.

https://www.helpndoc.com/create-epub-ebooks

My Visual Database

70 / 222

Component properties
 Property Description
 TableName Determines which database table a component belongs to.
 FieldName Determines which field of the database table this component belongs to.
 BgColor Specifies the background color of the component.
 DefaultValue Allows you to set the default value when creating a new record.
 Filter Allows you to select the data filtering condition when using this component together with the button with the "Search" action. More info.
 Font → Color Specifies the font color to use when displaying the text.
 Font → Name Identifies the typeface of the font.
 Font → Size Specifies the height of the font in points.
 Font → Style Determines whether the font is normal, italic, underlined, bold, and so on.
 Increm. Search Allows you to select the button with the action "Search" or "SQL query", which will be automatically clicked when the user enters text for instant search.
 NumbersOnly Allows only numbers to be typed into the text edit.
 Currency Enables formatting for monetary values.
 Accuracy Specifies the number of digits after the decimal point.
 Prefix The text to be inserted before the value, for example, it could be a dollar sign: $
 Suffix The text to be inserted after the value.
 ThousandSep. Specifies whether a thousand separator will be shown, for example: 10,000.00
 ReadOnly Determines whether the user can change the text of the edit control.
 Name Specifies the name of the component.
 Left Specifies the horizontal coordinate of the left edge of a component relative to its parent.
 Top Specifies the Y coordinate of the upper-left corner of a control, relative to its parent or containing control in pixels.
 Width Specifies the horizontal size of the control in pixels.
 Height Specifies the vertical size of the control in pixels.
 TabOrder Indicates the position of the control in its parent's tab order.
 TabStop Determines if the user can tab to a control.
 Visible Specifies whether the component appears onscreen.
 Anchors Specifies how the control is anchored to its parent. More info.

Additional properties
 Property Description
 Alignment Determines how the text is aligned within the text edit control.
 EditMask Allows you to create an input mask.
 AutoSelect Determines whether all the text in the edit control is automatically selected when the control gets focus.
 AutoSize Determines whether the height of the edit control automatically resizes to accommodate the text.
 BevelInner Specifies the cut of the inner bevel.
 BevelKind Specifies the control's bevel style.
 BevelOuter Specifies the cut of the outer bevel.
 BorderStyle Determines whether the edit component has a single line border around the client area.
 BiDiMode Specifies the bi-directional mode for the component.
 CharCase Determines the case of the text within the edit component.
 Constraints Specifies the size constraints for the component. It makes sense when using the Anchors property.
 Cursor Specifies the image used to represent the mouse pointer when it passes into the region covered by the component.
 Enabled Controls whether the component responds to mouse and keyboard events.
 Hint Hint contains the text string that appears when the user moves the mouse over the component. The hint will be shown if the ShowHint property = True
 MaxLength Specifies the maximum number of characters the user can enter into the edit component.
 PasswordChar Indicates the character, if any, to display in place of the actual characters typed in the component. Typically used to enter a password. Usually used is an asterisk symbol: *
 ShowHint Determines whether the control displays a Help Hint when the mouse pointer rests momentarily on the component. See also property Hint

My Visual Database

71 / 222

 TextHint A hint or message to be displayed when the Text property is empty.
 Text Contains a text string associated with the component.

Created with the Standard Edition of HelpNDoc: Free HTML Help documentation generator

Filter

Purpose

Allows you to select the data filtering condition when using this component together with the button with
the "Search" action.

Description

The following filters are available

 Value Description
 = Exact match.

 %s% Search for substring in a string.
 s% Finds any values that starts with s.
 > Greater than. For numbers only.

 >= Greater than equal to. For numbers only.
 < Less than. For numbers only.

 <= Less than equal to. For numbers only.
 <> Not equal to. For numbers only.

Created with the Standard Edition of HelpNDoc: Free iPhone documentation generator

Memo

Description

Multiline edit boxes allow the user to enter more than one line of text. As a rule, this component is
assigned to a specific database field through the TableName and FieldName properties.

Component properties
 Property Description
 TableName Determines which database table a component belongs to.
 FieldName Determines which field of the database table this component belongs to.
 BgColor Specifies the background color of the component.
 DefaultValue Allows you to set the default value when creating a new record.
 Font → Color Specifies the font color to use when displaying the text.
 Font → Name Identifies the typeface of the font.
 Font → Size Specifies the height of the font in points.
 Font → Style Determines whether the font is normal, italic, underlined, bold, and so on.
 ReadOnly Determines whether the user can change the text of the edit control.

https://www.helpndoc.com
https://www.helpndoc.com/feature-tour/iphone-website-generation

My Visual Database

72 / 222

 Name Specifies the name of the component.
 Left Specifies the horizontal coordinate of the left edge of a component relative to its parent.
 Top Specifies the Y coordinate of the upper-left corner of a control, relative to its parent or containing control in pixels.
 Width Specifies the horizontal size of the control in pixels.
 Height Specifies the vertical size of the control in pixels.
 TabOrder Indicates the position of the control in its parent's tab order.
 TabStop Determines if the user can tab to a control.
 Visible Specifies whether the component appears onscreen.
 Anchors Specifies how the control is anchored to its parent. More info.

Additional properties
 Property Description
 Alignment Determines how the text is aligned within the text edit control.
 BevelInner Specifies the cut of the inner bevel.
 BevelKind Specifies the control's bevel style.
 BevelOuter Specifies the cut of the outer bevel.
 BorderStyle Determines whether the edit component has a single line border around the client area.
 BiDiMode Specifies the bi-directional mode for the component.
 CharCase Determines the case of the text within the edit component.
 Constraints Specifies the size constraints for the component. It makes sense when using the Anchors property.
 Cursor Specifies the image used to represent the mouse pointer when it passes into the region covered by the component.
 Enabled Controls whether the component responds to mouse and keyboard events.
 HideSelection Determines whether the visual indication of the selected text remains when focus shifts to another component.
 Hint Hint contains the text string that appears when the user moves the mouse over the component. The hint will be shown if the ShowHint property = True
 MaxLength Specifies the maximum number of characters the user can enter into the edit component.
 ScrollBars Determines whether the memo component has scroll bars.
 ShowHint Determines whether the control displays a Help Hint when the mouse pointer rests momentarily on the component. See also property Hint
 Text Contains a text string associated with the component.
 WantReturns Determines whether the user can insert return characters into the text.
 WantTabs Determines whether the user can insert tab characters into the text.
 WordWrap Determines whether the edit control inserts soft carriage returns so text wraps at the right margin.

Created with the Standard Edition of HelpNDoc: Easily create PDF Help documents

RichEdit

Description

Rich text edit controls let the user enter text that includes variation in font attributes, paragraph formatting
information, images, tables and etc. RTF (Rich Text Format) storage format is used. As a rule, this
component is assigned to a specific database field through the TableName and FieldName properties.

Component properties
 Property Description
 TableName Determines which database table a component belongs to.
 FieldName Determines which field of the database table this component belongs to.
 DefaultValue Allows you to set the default value when creating a new record.

https://www.helpndoc.com/feature-tour

My Visual Database

73 / 222

 ReadOnly Determines whether the user can change the text of the edit control.
 Ruler Defines the presence of a horizontal ruler.
 ToolBar1 Allows you to customize the visibility of buttons for the first row of the toolbar.
 ToolBar2 Allows you to customize the visibility of buttons for the second row of the toolbar.
 ToolBar3 Allows you to customize the visibility of buttons for the third row of the toolbar
 Name Specifies the name of the component.
 Left Specifies the horizontal coordinate of the left edge of a component relative to its parent.
 Top Specifies the Y coordinate of the upper-left corner of a control, relative to its parent or containing control in pixels.
 Width Specifies the horizontal size of the control in pixels.
 Height Specifies the vertical size of the control in pixels.
 TabOrder Indicates the position of the control in its parent's tab order.
 TabStop Determines if the user can tab to a control.
 Visible Specifies whether the component appears onscreen.
 Anchors Specifies how the control is anchored to its parent. More info.

Additional properties
 Property Description
 Constraints Specifies the size constraints for the component. It makes sense when using the Anchors property.
 Enabled Controls whether the component responds to mouse and keyboard events.

Created with the Standard Edition of HelpNDoc: Produce Kindle eBooks easily

CheckBox

Description

CheckBox represents a check box that can be on (checked) or off (unchecked). The user can check the box
to select the option, or uncheck it to deselect the option. If necessary, the component can have three
states, such as On, Off and Grayed, to do this, set the AllowGrayed component property to True.

As a rule, this component is assigned to a specific database field through the TableName and FieldName
properties.

Component properties
 Property Description
 TableName Determines which database table a component belongs to.
 FieldName Determines which field of the database table this component belongs to.
 AllowGrayed Determines whether check box can be in a "grayed" state.
 Caption Specifies a text string that identifies the component to the user.
 Font → Color Specifies the font color to use when displaying the text. Starting with Windows Vista, you cannot change the font color for a checkbox.
 Font → Name Identifies the typeface of the font.
 Font → Size Specifies the height of the font in points.
 Font → Style Determines whether the font is normal, italic, underlined, bold, and so on.
 Increm.Search Allows you to select the button with the action "Search" or "SQL query", which will be automatically clicked when the user changes the value of the component for immediate search.
 DefaultState Allows you to set the default value when creating a new record.
 Name Specifies the name of the component.
 Left Specifies the horizontal coordinate of the left edge of a component relative to its parent.
 Top Specifies the Y coordinate of the upper-left corner of a control, relative to its parent or containing control in pixels.

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

My Visual Database

74 / 222

 Width Specifies the horizontal size of the control in pixels.
 Height Specifies the vertical size of the control in pixels.
 TabOrder Indicates the position of the control in its parent's tab order.
 TabStop Determines if the user can tab to a control.
 Visible Specifies whether the component appears onscreen.
 Anchors Specifies how the control is anchored to its parent. More info.

Additional properties
 Property Description
 Alignment Determines whether the check box label aligns to the left or to the right of the tick box.
 BiDiMode Specifies the bi-directional mode for the component.
 Checked Defines the component value.
 Constraints Specifies the size constraints for the component. It makes sense when using the Anchors property.
 Cursor Specifies the image used to represent the mouse pointer when it passes into the region covered by the component.
 Enabled Controls whether the component responds to mouse and keyboard events.
 Hint Hint contains the text string that appears when the user moves the mouse over the component. The hint will be shown if the ShowHint property = True
 ShowHint Determines whether the control displays a Help Hint when the mouse pointer rests momentarily on the component. See also property Hint
 State Indicates whether the check box is selected, deselected, or grayed.
 WordWrap Specifies whether the text wraps to fit the width of the component.

Created with the Standard Edition of HelpNDoc: Produce Kindle eBooks easily

DateTimePicker

Description

DateTimePicker is designed specifically for entering dates or/and times. As a rule, this component is
assigned to a specific database field through the TableName and FieldName properties.

Component properties
 Property Description
 TableName Determines which database table a component belongs to.
 FieldName Determines which field of the database table this component belongs to.
 Calendar Allows you to select the DateTimePicker or Calendar component. It makes sense if the Kind=Time property. More info.
 DefaultChecked Allows you to set Checked value when creating a new record. It makes sense if the ShowCheckbox property = True
 Font → Color Specifies the font color to use when displaying the text. Starting with Windows Vista, you cannot change the font color for a datetimepicker.
 Font → Name Identifies the typeface of the font.
 Font → Size Specifies the height of the font in points.
 Font → Style Determines whether the font is normal, italic, underlined, bold, and so on.
 Increm.Search Allows you to select the button with the action "Search" or "SQL query", which will be automatically clicked when the user changes the value of the component for immediate search.
 DateFormat Specifies format in which the date is presented. For example, "12/31/2020" or "31 December 2020". It makes sense if the property Kind=Date More info.
 DateMode Determines the method of date selection used by the component. It makes sense if the property Kind=Date
 Filter Allows you to select the data filtering condition when using this component together with the button with the "Search" action. More info.
 Format Specifies format in which the date or time is presented. More info.
 Kind Allows you to select a date mode. Date - date only. Time - time only. DateTime - date and time simultaneously. MonthYear - month and year.
 Name Specifies the name of the component.
 Left Specifies the horizontal coordinate of the left edge of a component relative to its parent.

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

My Visual Database

75 / 222

 Top Specifies the Y coordinate of the upper-left corner of a control, relative to its parent or containing control in pixels.
 Width Specifies the horizontal size of the control in pixels.
 Height Specifies the vertical size of the control in pixels.
 TabOrder Indicates the position of the control in its parent's tab order.
 TabStop Determines if the user can tab to a control.
 Visible Specifies whether the component appears onscreen.
 Anchors Specifies how the control is anchored to its parent. More info.

Additional properties
 Property Description
 BevelInner Specifies the cut of the inner bevel.
 BevelKind Specifies the control's bevel style.
 BevelOuter Specifies the cut of the outer bevel.
 BiDiMode Specifies the bi-directional mode for the component.
 CalAlignment Determines the alignment of the drop-down calendar.
 Checked Indicates whether the check box next to the date or time is selected.
 Constraints Specifies the size constraints for the component. It makes sense when using the Anchors property.
 Cursor Specifies the image used to represent the mouse pointer when it passes into the region covered by the component.
 Enabled Controls whether the component responds to mouse and keyboard events.
 Hint Hint contains the text string that appears when the user moves the mouse over the component. The hint will be shown if the ShowHint property = True
 ShowHint Determines whether the control displays a Help Hint when the mouse pointer rests momentarily on the component. See also property Hint
 ShowCheckbox Displays a check box next to the date or time.

Created with the Standard Edition of HelpNDoc: Free Qt Help documentation generator

property Calendar

Purpose

Allows you to bind to a component, the second component of the DateTimePicker or Calendar.

Description

For example, you need to save to the database at the same time the date and time, for this you need to
link the two components, one of which will be the main and display time, and the second slave, his name
must be entered in the Calendar property of the main component, the component can be
subordinate DateTimePicker with property Kind = Date, or the component Calendar.

A subordinate component, there is no need to define properties TableName and FieldName, this must be
done only by the main component.

Created with the Standard Edition of HelpNDoc: Free HTML Help documentation generator

property Filter

Purpose

Allows you to select the data filtering condition when using this component together with the button with

https://www.helpndoc.com
https://www.helpndoc.com

My Visual Database

76 / 222

the "Search" action.

Description

The following filters are available

 Value Description
 = Exact date match.
 > Greater than.

 >= Greater than equal to.
 < Less than.

 <= Less than equal to.

Example

Let's say you need to output records for a certain period. To do this, place two DateTimePicker
components on the form, select ">=" for the Filter property in one of them and "<=" in the other.

Do not forget to select these components in the settings of the button with the action "Search".

Created with the Standard Edition of HelpNDoc: Produce online help for Qt applications

property Format

Purpose

Allows you to set your own date or time format.

Description

For example, to make the date look like: Monday, 7 December 20, use the following format: dddd, d
MMMM yy

The following format characters are understood:
yy = The last two digits of the year (that is, 2020 would be displayed as "20").
yyyy = The full year (that is, 2020 would be displayed as "2020").
M = The one- or two-digit month number.
MM = The two-digit month number. Single-digit values are preceded by a zero.
MMM = The three-character month abbreviation (Jan).
MMMM = The full month name. (January)
d = The one- or two-digit day.
dd = The two-digit day. Single-digit day values are preceded by a zero.
ddd = The three-character weekday abbreviation.
dddd = The full weekday name.

h = The one- or two-digit hour in 12-hour format.

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework

My Visual Database

77 / 222

hh = The two-digit hour in 12-hour format. Single-digit values are preceded by a zero.
H = The one- or two-digit hour in 24-hour format.
HH = The two-digit hour in 24-hour format. Single-digit values are preceded by a zero.
m = The one- or two-digit minute.
mm = The two-digit minute. Single-digit values are preceded by a zero.
t = The one-letter AM/PM abbreviation (that is, AM is displayed as "A").
tt = The two-letter AM/PM abbreviation (that is, AM is displayed as "AM").

If the DateTimePicker component has the property Kind = DateTime, you can change the time format using
the script:

procedure Form1_OnShow (Sender: TObject; Action: string);
begin
 Form1.DateTimePicker1.TimeFormat := 'HH:mm';
end;

Created with the Standard Edition of HelpNDoc: Free iPhone documentation generator

Calendar

Description

Calendar is a component that displays the month calendar of the specified year. As a rule, this component
is assigned to a specific database field through the TableName and FieldName properties.

Component properties
 Property Description
 TableName Determines which database table a component belongs to.
 FieldName Determines which field of the database table this component belongs to.
 Filter Allows you to select the data filtering condition when using this component together with the button with the "Search" action. More info.
 Increm.Search Allows you to select the button with the action "Search" or "SQL query", which will be automatically clicked when the user changes the value of the component for immediate search.
 Name Specifies the name of the component.
 Left Specifies the horizontal coordinate of the left edge of a component relative to its parent.
 Top Specifies the Y coordinate of the upper-left corner of a control, relative to its parent or containing control in pixels.
 Width Specifies the horizontal size of the control in pixels.
 Height Specifies the vertical size of the control in pixels.
 WeekNumbers Specifies whether week numbers are shown to the left of the calendar.
 TabOrder Indicates the position of the control in its parent's tab order.
 TabStop Determines if the user can tab to a control.
 Visible Specifies whether the component appears onscreen.
 Anchors Specifies how the control is anchored to its parent. More info.

Additional properties
 Property Description
 BiDiMode Specifies the bi-directional mode for the component.
 Constraints Specifies the size constraints for the component. It makes sense when using the Anchors property.
 Cursor Specifies the image used to represent the mouse pointer when it passes into the region covered by the component.
 Enabled Controls whether the component responds to mouse and keyboard events.
 Hint Hint contains the text string that appears when the user moves the mouse over the component. The hint will be shown if the ShowHint property = True

https://www.helpndoc.com/feature-tour/iphone-website-generation

My Visual Database

78 / 222

 MaxDate Indicates the maximum date to which users can scroll the calendar.
 MaxSelectRange Specifies the maximum number of days that can be selected. It makes sense if MultiSelect property = True
 MultiSelect Specifies whether multiple dates can be selected on the calendar.
 ShowHint Determines whether the control displays a Help Hint when the mouse pointer rests momentarily on the component. See also property Hint
 ShowToday Specifies whether today's date is shown below the calendar.
 ShowTodayCircle Specifies whether today's date is circled on the calendar.
 WeekNumbers Specifies whether week numbers are shown to the left of the calendar.

Created with the Standard Edition of HelpNDoc: Free help authoring tool

ComboBox

Description

The component is used to display/select the record. After you determine which column of the table refers
this component through the Foreign Key properties and FieldName, the ComboBox will contain all the
records from the database table of the selected field.

For example you have a database table containing a list of professions, after you define the properties of
the component Foreign Key and FieldName, a ComboBox will contain all the professions from the
database table.

Component properties
 Property Description
 ForeignKey Allows you to select a foreign key. If the foreign key is missing in the database structure, you can write the table name manually.
 FieldName Specifies the field whose records will be displayed in the component. You can specify multiple fields: {field1} {field2}
 BgColor Specifies the background color of the component.
 Filter A filter where you can set the condition for filtering records. You can use calculated fields in curly brackets. For example: {calc_field}=1
 Font → Color Specifies the font color to use when displaying the text.
 Font → Name Identifies the typeface of the font.
 Font → Size Specifies the height of the font in points.
 Font → Style Determines whether the font is normal, italic, underlined, bold, and so on.
 Increm. Search Allows you to select the button with the action "Search" or "SQL query", which will be automatically clicked when the user changes the value of the component for immediate search.
 DropDownCount Specifies the maximum number of items displayed in the drop-down list.
 DefaultIndex The sequence number of the record in the list, selected by default when a new record is created. If 0, the default entry is not selected.
 Searchable Determines whether it will be possible to quickly search for a record directly in the component.
 Sort Determines whether the records in the component will be sorted alphabetically. To sort by another field in the table, use the SortField and SortOrder properties.
 Name Specifies the name of the component.
 ParentComboBox Allows you to specify a parent ComboBox, needed to create linked lists. For example: Country > City. More info.
 Left Specifies the horizontal coordinate of the left edge of a component relative to its parent.
 Top Specifies the Y coordinate of the upper-left corner of a control, relative to its parent or containing control in pixels.
 Width Specifies the horizontal size of the control in pixels.
 Height Specifies the vertical size of the control in pixels.
 TabOrder Indicates the position of the control in its parent's tab order.
 TabStop Determines if the user can tab to a control.
 Visible Specifies whether the component appears onscreen.
 Anchors Specifies how the control is anchored to its parent. More info.

https://www.helpndoc.com/help-authoring-tool

My Visual Database

79 / 222

Additional properties
 Property Description
 AutoComplete Positions to matching list items as you type. Makes sense if the Style property = csDropDown
 AutoWidth Specifies whether the dropdown list automatically adjusts its width depending on its content.
 BevelInner Specifies the cut of the inner bevel.
 BevelKind Specifies the control's bevel style.
 BevelOuter Specifies the cut of the outer bevel.
 BiDiMode Specifies the bi-directional mode for the component.
 CharCase Determines the case of the text in the combo box.
 Constraints Specifies the size constraints for the component. It makes sense when using the Anchors property.
 Cursor Specifies the image used to represent the mouse pointer when it passes into the region covered by the component.
 Enabled Controls whether the component responds to mouse and keyboard events.
 FirstEmptyItem Specifies whether the first item in the list is an empty value. Used to select a NULL value.
 Hint Hint contains the text string that appears when the user moves the mouse over the component. The hint will be shown if the ShowHint property = True
 MaxLength Specifies the maximum number of characters the user can type into the edit portion of the combo box. Makes sense if the Style property = csDropDown
 MultiSelect Enables multiple selection of entries in the component. Applies when using the button with the "Search" action or a script.
 ShowHint Determines whether the control displays a Help Hint when the mouse pointer rests momentarily on the component. See also property Hint
 SortField Allows you to select the field in the database, by which the records in the component will be sorted.
 SortOrder Allows you to select the sort order, ascending or descending.
 Style Determines the display style of the combo box.
 Text Contains a text string associated with the control.
 TextHint Specifies the text that is displayed as a text watermark in the edit box of the combo box control.

Created with the Standard Edition of HelpNDoc: Full-featured Kindle eBooks generator

property ParentComboBox

Purpose

It is necessary to create linked lists of two or more components.

Description

An example of a linked list is Countries and Cities. For example, when we select a country in the first
ComboBox, and in the second linked ComboBox we can select only those cities that are present in the
selected country.

To implement such a linked list, you must first create two tables in the database: Country and City.
The third table Visit is needed to record the visits of cities. Thus, the database structure will be as shown
in the figure below:

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

My Visual Database

80 / 222

Pay attention to the external key id_Country in the table City, as a rule, it is created with the option
"Cascade delete", so when you delete any country from the table Country, cities belonging to the country
will also be automatically removed.

Once the necessary tables in the database have been created, you can proceed to setting up components.
In the ParentComboBox property of the ComboBox that shows cities, you must select the name of the
ComboBox that shows countries. Thus, the ComboBox that shows cities becomes linked.

Here you can download an example project of this linked list.

Created with the Standard Edition of HelpNDoc: Single source CHM, PDF, DOC and HTML Help creation

TableGrid

Description

The component is used to output search results. Through the Settings property, the component can be
configured to automatically output all records of the database table, usually used for dictionary tables and
for the output of child records from the database table.

Additional features

While your project is running, this component has the following features.

1. You can copy the contents of a particular cell to the clipboard by holding down the Ctrl button and
left-clicking on the cell.

2. You can copy the contents of the selected row to the clipboard by right-clicking and selecting "Copy
row" from the menu that appears.

3. You can copy the entire contents of the table to the clipboard by right-clicking it and choosing "Copy
all" or just Shift+Ctrl+C from the menu that appears. You can also paste the contents of the clipboard
into Excel.

Component properties
 Property Description
 Settings Allows you to configure the component to show records from the database. More info.
 Editable → AllowCreate Responsible for the ability to create new records directly in the component.

examples/Linked Lists - Country - City.zip
https://www.helpndoc.com/help-authoring-tool

My Visual Database

81 / 222

 Editable → AllowCreateEmpty Allows the creation of new empty records.
 Editable → AllowEdit Enables editing records directly in the component.
 Editable → AllowDelete Enables the ability to delete entries directly in the component.
 Editable → SecondClickEdit Determines whether you need to double-click on a cell to edit a record.
 Font → Color Specifies the font color to use when displaying the text.
 Font → Name Identifies the typeface of the font.
 Font → Size Specifies the height of the font in points.
 Font → Style Determines whether the font is normal, italic, underlined, bold, and so on.
 HeaderStyle Allows you to select the header style for columns.
 Increm. Search Allows you to select the button with the action "Search" or "SQL query", which will be automatically clicked when the user changes the value of the component for immediate search.
 Name Specifies the name of the component.
 Left Specifies the horizontal coordinate of the left edge of a component relative to its parent.
 Top Specifies the Y coordinate of the upper-left corner of a control, relative to its parent or containing control in pixels.
 Width Specifies the horizontal size of the control in pixels.
 Height Specifies the vertical size of the control in pixels.
 TabOrder Indicates the position of the control in its parent's tab order.
 TabStop Determines if the user can tab to a control.
 Visible Specifies whether the component appears onscreen.
 Anchors Specifies how the control is anchored to its parent. More info.

Additional properties
 Property Description
 AppearanceOptions Configuring the appearance of the component. More info.
 AutoScroll Determines whether the scroll will be moved automatically to make the selected entry visible.
 BiDiMode Specifies the bi-directional mode for the component.
 Caption Allows you to write an caption on the component. The caption will disappear after the component is filled with data.
 Color Specifies the background color of the component.
 Constraints Specifies the size constraints for the component. It makes sense when using the Anchors property.
 Cursor Specifies the image used to represent the mouse pointer when it passes into the region covered by the component.
 DefaultRowHeight Defines the height of the rows.
 Enabled Controls whether the component responds to mouse and keyboard events.
 EnableVisualStyles Using visual styles for headings.
 FixedCols Specifies the number of fixed columns that will not be affected by horizontal scrolling.
 FooterSize Determines the height of the footer.
 GridLinesColor Defines the color of the lines that separate columns and rows.
 GridLinesStyle Defines the style of lines that separate columns and rows.
 GridStyle Allows you to select the style of the component. The gsSlides style requires the use of a script, example.
 HeaderSize Defines the height of the headers.
 HideScrollBar Determines whether the vertical scroll will be hidden when it is not needed.
 HighlightedTextColor Defines the color of the text in the selected row or cell.
 Hint Hint contains the text string that appears when the user moves the mouse over the component. The hint will be shown if the ShowHint property = True
 HomeEndBehaviour Defines the behavior of the Home and End buttons. hebTopBottom - move between the first and last entry, hebLeftRight - move between the first and last column.
 InactiveSelectionColor Determines the background color of the selected row or cell when the component has no focus.
 InputSize Defines the height of the zone to create a new record.
 KeepUserSort Determines whether the component will remember the column by which the user did the sorting, otherwise the sorting is defined in the component or button settings.
 Limit Allows you to limit the number of records that will be retrieved from the database.
 MouseWheelEnabled Determines whether the component will respond to mouse scrolling.
 Options Additional component settings. More info.
 ReadOnly Allows you to disable data editing in a component.

My Visual Database

82 / 222

 SelectionColor Defines the color of the selected row or cell. Makes sense if the AppearanceOptions → aoAlphaBlendedSelection property = False
 ShowHint Determines whether the control displays a Help Hint when the mouse pointer rests momentarily on the component. See also property Hint
 SortedStyle Allows you to set the sorted column selection style.
 WantTabs Determines whether the Tab key will move the focus between cells within a component or whether the component will pass the focus to another component.

Created with the Standard Edition of HelpNDoc: News and information about help authoring tools and
software

property AppearanceOptions

Purpose

Configuring the appearance of the component

Description

The following settings are available

 Value Description

 aoAlphaBlendedSelection Paint selection semi-transparent (alpha blended). This option mimic Windows Explorer selection style. Set it to False to set a different color in the
SelectionColor property

 aoBoldTextSelection Bold text in selected cells.
 aoHideFocus Hide focus (dotted) rectangle.
 aoHideSelection Hide selection (painted in InactiveSelectionColor color) when grid is not focused.
 aoHighlightSlideCells Highlights the cell dimensions visually when the GridStyle component property = gsSlides
 aoHintMarks Control showing red triangles in top-left corner of cells with hint set. Form1.TableGrid1.Cell[x, y].Hint := 'Text';
 aoIndicateSelectedCell Additionally highlight the selected cell in the selected row.
 aoIndicateSortedColumn Paint sorted column in slightly dimmed color.

Created with the Standard Edition of HelpNDoc: Free EPub and documentation generator

property Options

Purpose

Additional component settings

Description

https://www.helpauthoringsoftware.com
https://www.helpauthoringsoftware.com
https://www.helpndoc.com

My Visual Database

83 / 222

The following settings are available

 Value Description
 goArrowKeyExitEditing When editing the contents of a cell, pressing the arrows on the keyboard exits the cell.
 goCanHideColumn Allows you to hide columns when dragging a column down. Makes sense if the goDisableColumnMoving property = False
 goDisableColumnMoving Prohibits dragging columns with the mouse.
 goDisableKeys Disables the ability to use the arrows on the keyboard.
 goEscClearEdit When editing the contents of a cell, pressing the Escape key on the keyboard will clear the cell.
 goFooter Shows the footer.
 goGrid Shows the grid that separates columns and rows.
 goHeader Shows header.
 goIndicator Shows the indicator of the highlighted line.
 goInput Shows the input line below the column header.
 goLockFixedCols Prohibits drag and drop of fixed columns (see FixedCols).
 goMultiSelect Enables multiple row selection (using the Shift and Control buttons)
 goRowResizing Enables the ability to change the height of rows with the mouse. Makes sense if the goIndicator property = True
 goRowMoving Enables the ability to drag and drop rows with the mouse.
 goSecondClickEdit Editing a cell with a double click.
 goSelectFullRow Select the entire row.

Created with the Standard Edition of HelpNDoc: Create cross-platform Qt Help files

property Settings

Purpose

Setting of the component is necessary when you want to display all records from the database table or
child records on the record creation/editing form (for example, all phone numbers of the person).

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework

My Visual Database

84 / 222

Description

1. Select the database table from which we will take the information. In this example, we display a list of
people, so choose a database table named person

2. Choose which fields of the database table you want to show. Note that we can add fields from other
database tables, such as groups.groupname, because the table person has a foreign key to the table
groups (in this example it is person.ig_groups).

We also assign names to the headers (First name, Last name, Group)

The third column with the icon allows you to set the formula for calculating the total value in the footer
and select the alignment of the text for that column. More info.

If necessary, you can choose which database field to sort by.

When selecting a database field to sort from a list, the final sorting is performed directly by the component itself,
which increases the performance of retrieving data from the database. When specifying sorting manually
(ORDER BY), sorting is performed on the DBMS side.

My Visual Database

85 / 222

3. You can filter records by conditions. The syntax of the conditions is similar to the syntax of the SQL
query language in the WHERE section. It is acceptable to use calculated fields in this field, which must be of
the form: {tablename.calculated_field_name}

Note the line on the left side: #Auto-Number, you can use it to add a column with continuous numbering.

With the #Checkbox line, you can add a checkbox column, for example, to mark records you want. This
column is usually used in conjunction with the script.

Note the options: "Show child records" and "Show all records from table".

If you need to display all records from the database table, select "Show all records from table".

If the component is on a form designed to create/edit a record and you need to show the child records,
select "Show child records". An example of a child record can be all phone numbers that belong to the
person.

Created with the Standard Edition of HelpNDoc: Free Qt Help documentation generator

Column setting

Purpose

The column setting allows you to choose a formula to calculate the totals in the footer and set the text
alignment.

Description

When configuring the button with the SEARCH action or configuring the TableGrid component, it is
possible to select a formula to calculate the total in the desired column.

The following formulas are available to calculate the total:

· none - no formula
· Sum - sum calculation
· Count - row count
· Average - arithmetic mean
· Maximum - maximum value
· Minimum - minimum value
· Distinct - counting the number of unique values

https://www.helpndoc.com

My Visual Database

86 / 222

In this example, choose the formula Sum, which subtracts the sum of all values in the column. In addition,
you can specify any text both before and after the total value.

The result of the setting, will be the total values in the footer of the table component.

Created with the Standard Edition of HelpNDoc: Free EPub producer

https://www.helpndoc.com/create-epub-ebooks

My Visual Database

87 / 222

Counter

Description

Allows you to assign a unique number to records. If you set the ReadOnly component property to False,
you can edit the sequence number for the record if necessary, and this property is also used when this
component is used for searching.

Unlike other components, there is no FieldName property, you only need to set TableName, which
defines the name of the database table that contains a field with the type COUNTER.

Component properties
 Property Description
 TableName Determines which database table a component belongs to.
 BgColor Specifies the background color of the component.
 Font → Color Specifies the font color to use when displaying the text.
 Font → Name Identifies the typeface of the font.
 Font → Size Specifies the height of the font in points.
 Font → Style Determines whether the font is normal, italic, underlined, bold, and so on.
 ReadOnly Determines whether the user can change the text of the edit control.
 Name Specifies the name of the component.
 Left Specifies the horizontal coordinate of the left edge of a component relative to its parent.
 Top Specifies the Y coordinate of the upper-left corner of a control, relative to its parent or containing control in pixels.
 Width Specifies the horizontal size of the control in pixels.
 Height Specifies the vertical size of the control in pixels.
 TabOrder Indicates the position of the control in its parent's tab order.
 TabStop Determines if the user can tab to a control.
 Visible Specifies whether the component appears onscreen.
 Anchors Specifies how the control is anchored to its parent. More info.

Additional properties
 Property Description
 Alignment Determines how the text is aligned within the text edit control.
 AutoSelect Determines whether all the text in the edit control is automatically selected when the control gets focus.
 AutoSize Determines whether the height of the edit control automatically resizes to accommodate the text.
 BevelInner Specifies the cut of the inner bevel.
 BevelKind Specifies the control's bevel style.
 BevelOuter Specifies the cut of the outer bevel.
 BorderStyle Determines whether the edit component has a single line border around the client area.
 BiDiMode Specifies the bi-directional mode for the component.
 CharCase Determines the case of the text within the edit component.
 Constraints Specifies the size constraints for the component. It makes sense when using the Anchors property.
 Cursor Specifies the image used to represent the mouse pointer when it passes into the region covered by the component.
 Enabled Controls whether the component responds to mouse and keyboard events.
 Hint Hint contains the text string that appears when the user moves the mouse over the component. The hint will be shown if the ShowHint property = True
 ShowHint Determines whether the control displays a Help Hint when the mouse pointer rests momentarily on the component. See also property Hint

My Visual Database

88 / 222

Created with the Standard Edition of HelpNDoc: iPhone web sites made easy

DBFile

Description

The component is used to save any file to the database*, with the ability to open or export it. The
component can also link to a file or folder on your computer without directly saving it to the database.

This component is assigned to a specific database field via the TableName and FieldName properties.

* It is not recommended to save files directly to the database, as it causes it to slow down.

Component properties
 Property Description
 TableName Determines which database table a component belongs to.
 FieldName Determines which field of the database table this component belongs to.
 BgColor Specifies the background color of the component.
 CopyTo Allows you to specify where you want the file to be copied automatically. More info.
 Font → Color Specifies the font color to use when displaying the text.
 Font → Name Identifies the typeface of the font.
 Font → Size Specifies the height of the font in points.
 Font → Style Determines whether the font is normal, italic, underlined, bold, and so on.
 Name Specifies the name of the component.
 Type Sets the method of working with a file, save to database, link to file, link to folder.
 Left Specifies the horizontal coordinate of the left edge of a component relative to its parent.
 Top Specifies the Y coordinate of the upper-left corner of a control, relative to its parent or containing control in pixels.
 Width Specifies the horizontal size of the control in pixels.
 Height Specifies the vertical size of the control in pixels.
 TabOrder Indicates the position of the control in its parent's tab order.
 TabStop Determines if the user can tab to a control.
 Visible Specifies whether the component appears onscreen.
 Anchors Specifies how the control is anchored to its parent. More info.

Additional properties
 Property Description
 Alignment Determines how the text is aligned within the text edit control.
 AutoSelect Determines whether all the text in the edit control is automatically selected when the control gets focus.
 AutoSize Determines whether the height of the edit control automatically resizes to accommodate the text.
 BevelInner Specifies the cut of the inner bevel.
 BevelKind Specifies the control's bevel style.
 BevelOuter Specifies the cut of the outer bevel.
 BorderStyle Determines whether the edit component has a single line border around the client area.
 BiDiMode Specifies the bi-directional mode for the component.
 CharCase Determines the case of the text within the edit component.
 Constraints Specifies the size constraints for the component. It makes sense when using the Anchors property.
 Cursor Specifies the image used to represent the mouse pointer when it passes into the region covered by the component.
 Enabled Controls whether the component responds to mouse and keyboard events.

https://www.helpndoc.com/feature-tour/iphone-website-generation

My Visual Database

89 / 222

 HideSelection Determines whether the visual indication of the selected text remains when focus shifts to another component.
 Hint Hint contains the text string that appears when the user moves the mouse over the component. The hint will be shown if the ShowHint property = True
 MaxLength Specifies the maximum number of characters the user can enter into the edit component.
 ReadOnly Determines whether the user can change the text of the edit control.
 ShowHint Determines whether the control displays a Help Hint when the mouse pointer rests momentarily on the component. See also property Hint
 TextHint A hint or message to be displayed when the Text property is empty.
 Text Contains a text string associated with the component.

Created with the Standard Edition of HelpNDoc: Easily create HTML Help documents

CopyTo

Purpose

The CopyTo property allows you to specify where to automatically copy the file relative to the database
file path. This property makes sense if the Type property has the value LinkFile.

Description

Possible values of the CopyTo property:

\ - file will be automatically copied to the folder with the database file

files - in the folder where the database file is located, files folder will be created, where the files will be
automatically copied, it is allowed to specify a chain of folders, such as files\docs, these folders will be
created automatically.

c:\files\ - the file will be automatically copied to the specified folder.

If the property is left empty, the file will not be copied automatically.

Created with the Standard Edition of HelpNDoc: Write eBooks for the Kindle

DBImage

Description

The component is used to save images to the database. Supported formats: jpg, bmp, gif, png8, png24.
The component is assigned to a specific database field via the TableName and FieldName properties.

Component properties
 Property Description
 TableName Determines which database table a component belongs to.
 FieldName Determines which field of the database table this component belongs to.
 CopyTo Allows you to specify where you want the file to be copied automatically. More info.
 Proportional Determines whether the original aspect ratio of the image should be preserved if the Stretch=True property
 Stretch Determines whether the image will fit the dimensions of the component.

https://www.helpndoc.com/feature-tour
https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

My Visual Database

90 / 222

 Transparent Specifies whether the background of the image obscures objects below the image object.
 Type Sets the method of working with a file, save to database, link to file, link to folder.
 Name Specifies the name of the component.
 Left Specifies the horizontal coordinate of the left edge of a component relative to its parent.
 Top Specifies the Y coordinate of the upper-left corner of a control, relative to its parent or containing control in pixels.
 Width Specifies the horizontal size of the control in pixels.
 Height Specifies the vertical size of the control in pixels.
 Visible Specifies whether the component appears onscreen.
 Anchors Specifies how the control is anchored to its parent. More info.

Additional properties
 Property Description
 Autosize Specifies whether the control sizes itself automatically to accommodate the dimensions of the image.
 Center Indicates whether the image is centered in the image control. Makes sense if the Stretch = False property
 EnablePreview Show the image in full size when you click on the component.
 ShowButtons Show buttons (Open, Save, Delete).
 ShowButtonOpen Show Open button.
 ShowButtonSave Show Save button.
 ShowButtonDelete Show Delete button.
 Constraints Specifies the size constraints for the component. It makes sense when using the Anchors property.
 Cursor Specifies the image used to represent the mouse pointer when it passes into the region covered by the component.
 Enabled Controls whether the component responds to mouse and keyboard events.
 Hint Hint contains the text string that appears when the user moves the mouse over the component. The hint will be shown if the ShowHint property = True
 ShowHint Determines whether the control displays a Help Hint when the mouse pointer rests momentarily on the component. See also property Hint

Created with the Standard Edition of HelpNDoc: Free Kindle producer

TreeView

Description

It serves for output and creation of data in a hierarchical form (tree structure). An example of hierarchical
data is the structure of a company. The main configuration of the component is done through the Settings
property.

Usage

Using the component, in many ways similar to using the ComboBox component. To use the TreeView
component, you need to create a separate database table and a foreign key in another database table,
which will store the user's selection. To use this component, you must also create an additional field in the
database table (Parent ID), the field is required for the formation of records in a hierarchy, it automatically
stores the identifier of the parent record.

Component allows you to create/edit/delete records, through context menu, without using additional
forms and buttons (property Editable).

If necessary, you can create and edit records using a form, for this component has a Form property, in
which you can select the form for these purposes.

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

My Visual Database

91 / 222

Component properties
 Property Description
 Settings Allows you to configure the component to show records from the database. More info.
 Editable → AllowCreate Responsible for the ability to create new records directly in the component.
 Editable → AllowEdit Enables editing records directly in the component.
 Editable → AllowDelete Enables the ability to delete entries directly in the component.
 Font → Color Specifies the font color to use when displaying the text.
 Font → Name Identifies the typeface of the font.
 Font → Size Specifies the height of the font in points.
 Font → Style Determines whether the font is normal, italic, underlined, bold, and so on.
 Form Allows you to select the form for creating/editing records.
 HeaderStyle Allows you to select the header style for columns.
 Increm. Search Allows you to select the button with the action "Search" or "SQL query", which will be automatically clicked when the user changes the value of the component for immediate search.
 Name Specifies the name of the component.
 Left Specifies the horizontal coordinate of the left edge of a component relative to its parent.
 Top Specifies the Y coordinate of the upper-left corner of a control, relative to its parent or containing control in pixels.
 Width Specifies the horizontal size of the control in pixels.
 Height Specifies the vertical size of the control in pixels.
 TabOrder Indicates the position of the control in its parent's tab order.
 TabStop Determines if the user can tab to a control.
 Visible Specifies whether the component appears onscreen.
 Anchors Specifies how the control is anchored to its parent. More info.

Additional properties
 Property Description
 AppearanceOptions Configuring the appearance of the component. Подробней.
 AutoScroll Determines whether the scroll will be moved automatically to make the selected entry visible.
 BiDiMode Specifies the bi-directional mode for the component.
 Caption Allows you to write an caption on the component. The caption will disappear after the component is filled with data.
 Color Specifies the background color of the component.
 Constraints Specifies the size constraints for the component. It makes sense when using the Anchors property.
 Cursor Specifies the image used to represent the mouse pointer when it passes into the region covered by the component.
 DefaultRowHeight Defines the height of the rows.
 Enabled Controls whether the component responds to mouse and keyboard events.
 EnableVisualStyles Using visual styles for headings.
 ExpandLock Allows you to prohibit the collapse of nodes.
 FixedCols Specifies the number of fixed columns that will not be affected by horizontal scrolling.
 FooterSize Determines the height of the footer.
 GridLinesColor Defines the color of the lines that separate columns and rows.
 GridLinesStyle Defines the style of lines that separate columns and rows.
 GridStyle Allows you to select the style of the component. The gsSlides style requires the use of a script.
 HeaderSize Defines the height of the headers.
 HideScrollBar Determines whether the vertical scroll will be hidden when it is not needed.
 HighlightedTextColor Defines the color of the text in the selected row or cell.
 Hint Hint contains the text string that appears when the user moves the mouse over the component. The hint will be shown if the ShowHint property = True

My Visual Database

92 / 222

 HomeEndBehaviour Defines the behavior of the Home and End buttons. hebTopBottom - move between the first and last entry, hebLeftRight - move between the first and last column.
 InactiveSelectionColor Determines the background color of the selected row or cell when the component has no focus.
 InputSize Defines the height of the zone to create a new record.
 KeepUserSort Determines whether the component will remember the column by which the user did the sorting, otherwise the sorting is defined in the component or button settings.
 MouseWheelEnabled Determines whether the component will respond to mouse scrolling.
 Options Additional component settings. More info.
 ReadOnly Allows you to disable data editing in a component.
 SelectionColor Defines the color of the selected row or cell. Makes sense if the AppearanceOptions → aoAlphaBlendedSelection property = False
 ShowHint Determines whether the control displays a Help Hint when the mouse pointer rests momentarily on the component. See also property Hint
 ShowLines Show lines in the tree.
 SortedStyle Allows you to set the sorted column selection style.
 WantTabs Determines whether the Tab key will move the focus between cells within a component or whether the component will pass the focus to another component.

Created with the Standard Edition of HelpNDoc: Easily create CHM Help documents

property Settings

Purpose

It serves for output and creation of data in a hierarchical form (tree structure). An example of hierarchical
data is the structure of a company.

Description

Using the component, in many ways similar to using the ComboBox component. To use the TreeView
component, you need to create a separate database table and a foreign key in another database table,
which will store the user's selection. To use this component, you must also create an additional field in the
database table (Parent ID), the field is required for the formation of records in a hierarchy, it automatically
stores the identifier of the parent record.

Let's look at an example where an employee can be assigned a position using the TreeView component.

The database structure of this example:

The form for creating/editing a record, where you can select a position for the employee will look like this:

https://www.helpndoc.com/feature-tour

My Visual Database

93 / 222

The TreeView component is configured as follows:

My Visual Database

94 / 222

1. Select an external key*, which will save the user's selection, similar to how it is saved in the ComboBox
component. You should also select the field of "INTEGER" type, which will automatically save identifier,
indicating the parent record. This is the field used by the system to form the hierarchy of records in the
database table.

*Instead of a foreign key, you can write the table name, if the creation of a foreign key for this table is not
planned in the database structure. I.e. instead of "employees.id_OrgStructure" you can write "OrgStructure"

2. Choose which database table fields we need in the component.
In this example, we need a job position and a comment.

We also give names to the headers for the columns.

In the columns , you can set the formula, to calculate the totals and alignment. More info.

3. You can filter records by conditions. The syntax of the conditions is similar to the syntax of the SQL
query language in the WHERE section. It is acceptable to use calculated fields in this field, which must be of
the form: {tablename.calculated_field_name}

Here you can download the project with this example.

Created with the Standard Edition of HelpNDoc: Write EPub books for the iPad

Map

Description

Allows you to place an interactive geographical map of Google Maps on the form, with the ability to put
on the map markers, lines and polygons (placing lines and polygons is done using scripts.).

You can map one or more markers, then save their locations to the database. This component is assigned
to two database fields via the TableName properties, FieldLatitude and FieldLongitude. The database
fields to be used must be of the type "REAL".

Put a marker on the map through the context menu of a component (right mouse click) or by using the
form on which you can place components to assign additional data to the marker (FormMarker property).

Component properties
 Property Description
 TableName Determines which database table a component belongs to.
 FieldLatitude Determines to which field of the database table belongs the latitude of the placed marker on the map.
 FieldLongitude Determines to which field of the database table belongs the longitude of the placed marker on the map.
 Name Specifies the name of the component.
 Left Specifies the horizontal coordinate of the left edge of a component relative to its parent.
 Top Specifies the Y coordinate of the upper-left corner of a control, relative to its parent or containing control in pixels.
 Width Specifies the horizontal size of the control in pixels.

examples/TreeView.zip
https://www.helpndoc.com/create-epub-ebooks

My Visual Database

95 / 222

 Height Specifies the vertical size of the control in pixels.
 TabOrder Indicates the position of the control in its parent's tab order.
 TabStop Determines if the user can tab to a control.
 Visible Specifies whether the component appears onscreen.
 Anchors Specifies how the control is anchored to its parent. More info.

Additional properties
 Property Description
 APIKey Optionally specify an API Key to identify the application with the Google Maps API. Get an API key from Google service
 Constraints Specifies the size constraints for the component. It makes sense when using the Anchors property.
 Enabled Controls whether the component responds to mouse and keyboard events.
 DefaultLatitude Sets the latitude value for the default position.
 DefaultLongitude Sets the longitude value for the default position.
 DefaultToCurrentLocation Sets the current location as the default position. DefaultLatitude and DefaultLongitude are ignored if set to true.
 DisableDoubleClickZoom When set to true, disables zoom functions when double-clicking.
 DisableMenu Allows you to disable the context menu.
 DisablePOI When set to true, disable display of the points of interest on the map.
 Draggable When set to true, the entire map can be moved around in the control.
 EnableKeyboard When set to true, enables the use of the keyboard for controlling panning in the map (or in street view mode).
 FormMarker Allows you to select the form to create/edit the marker, so you can specify additional information for the marker. More info.
 Language Allows you to select the interface language on the map.
 MapType Sets the type of map (roadmap, hybrid, satellite, topographic)
 MarkerIcon Set the path to the image file to use as a marker icon. More info.
 MarkersDraggable Allows you to move markers on the map with the mouse.
 MarkerInfoHTML Allows you to set the text of the tooltip, which will be shown when you click on the marker. Supports HTML and inserting data from the database. More info.
 ScrollWheel When set to true, enables the use of the scroll wheel. The scroll wheel can be used to zoom in and out on the map.
 ShowBicycling When set to true, and if available in your country, bicycle trail information can be displayed on the map.
 ShowTraffic When set to true, and if available in your country, traffic information can be displayed.
 ZoomMap Is to be used to set the default zoom at startup. The zoom value is a value between 1 and 21 with 21 being the highest zoom level.

More information about putting markers on the map

Like other components, a map may contain information that can be stored in a database. Such information
is the markers located on it. Thus, you can save to the database geographical coordinates of the object you
need, which will be marked on the map as a marker.

To save the location of the marker on the map, you need to use two fields in the database simultaneously.
Which is natural, because geographic coordinates consist of two parts, Latitude and Longitude.

Thus, to be able to put the marker on the map and save its location in the database, in the database table
you need to create two fields with the type "REAL". Why is it a real number? Coordinates are represented
as degrees, for example: 55.755831°, 37.617673°, which corresponds to this type of data.

You can map one or more markers. You can read more about this below.

https://developers.google.com/maps/documentation/javascript/get-api-key

My Visual Database

96 / 222

Putting one marker on the map
In this case, using the component is no different from others. Just specify which database table and which
database fields belong to this map using the TableName, FieldLatitude and FieldLongitude component
properties. Then add this component to the list in the "Save Record" button settings.

Putting more than one marker on the map

To be able to put several markers on the map and save their location, you need to create a separate
database table, which will store records of these markers.

These markers will be child records and in this table you must have a foreign key to the parent table.

Putting several markers on the map can be compared to using the "TableGrid" component to work with
child records, i.e. in our case markers will be child records.

An example of a database structure, when a company may have several offices and they need to be
marked on the map.

Created with the Standard Edition of HelpNDoc: Produce online help for Qt applications

MarkerIcon

Purpose

Set the path to the image file to use as a marker icon.

Description

As a graphic file, it is desirable to use an image in PNG format. You can specify the URL of the image file
or a local file.

The marker URL must begin with http

When specifying a local file, you can specify either an absolute path (for example: c:\marker.png) or a
relative path. For example marker.png, in this case this graphic file must be located in the folder of your
project. Also, the file can be placed in a subfolder, for example: images\marker.png

Created with the Standard Edition of HelpNDoc: Qt Help documentation made easy

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework

My Visual Database

97 / 222

MarkerInfoHTML

Purpose

Allows you to set the text of the tooltip, which will be shown when you click on the marker. Supports HTML
and inserting data from the database.

Description

Consider an example of a hint:

ID: {id}

Office name: {name}

Coordinates: {latitude}; {longitude}

Google.com

This is some text!

Note the text surrounded by curly braces, e.g: {id}, {name}, etc.
Thus, the tooltip inserts the value of the fields from the database that belong to the marker.

Created with the Standard Edition of HelpNDoc: Create cross-platform Qt Help files

FormMarker

Purpose

Allows you to select the form to create/edit the marker, so you can specify additional information for the
marker.

Description

Creating a form that allows you to specify additional data for a marker is no different than creating a form
for creating/editing a record.

When you put a marker on the map, the form specified in the FormMarker property will automatically be
shown, which allows you to assign any necessary information to the marker. In addition to creating this
form, you must create fields for this additional information in the same database table that stores the
coordinates of the created marker.

Created with the Standard Edition of HelpNDoc: Generate Kindle eBooks with ease

Image

Description
Use Image to display a graphical image on a form. For example, you can place your company logo on the
form. Supported formats are jpg, bmp, gif, png8, png24.

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

My Visual Database

98 / 222

Component properties
 Property Description
 Picture Specifies the image that appears on the image control. The picture is automatically saved to the project file graphics.dll

 Proportional Indicates whether the image should be changed, without distortion, so that it fits the bounds of the image control. The property makes sense if the
Stretch=True property

 Stretch Indicates whether the image should be changed so that it exactly fits the bounds of the image control.
 Transparent Specifies whether the background of the image obscures objects below the image object.
 Name Specifies the name of the component.
 Left Specifies the horizontal coordinate of the left edge of a component relative to its parent.
 Top Specifies the Y coordinate of the upper-left corner of a control, relative to its parent or containing control in pixels.
 Width Specifies the horizontal size of the control in pixels.
 Height Specifies the vertical size of the control in pixels.
 Visible Specifies whether the component appears onscreen.
 Anchors Specifies how the control is anchored to its parent. More info.

Additional properties
 Property Description
 AutoSize Specifies whether the control sizes itself automatically to accommodate the dimensions of the image.
 Center Indicates whether the image is centered in the image control.
 Constraints Specifies the size constraints for the component. It makes sense when using the Anchors property.
 Cursor Specifies the image used to represent the mouse pointer when it passes into the region covered by the component.
 Enabled Controls whether the component responds to mouse and keyboard events.
 Hint Hint contains the text string that appears when the user moves the mouse over the component. The hint will be shown if the ShowHint property = True
 ShowHint Determines whether the control displays a Help Hint when the mouse pointer rests momentarily on the component. See also property Hint

Created with the Standard Edition of HelpNDoc: Free PDF documentation generator

PageControl

Description
PageControl is a set of pages used to make a multiple page dialog box.
Use PageControl to create a multiple page dialog or tabbed notebook. PageControl displays multiple
overlapping pages that are TabSheet objects. The user selects a page by clicking the page's tab that
appears at the top of the control.

https://www.helpndoc.com

My Visual Database

99 / 222

Component properties
 Property Description
 Style Specifies the style of the tab control.
 TabPosition Determines whether tabs appear at the top or bottom.
 Font → Color Specifies the font color to use when displaying the text. Starting with Windows Vista, you cannot change the font color for a pagecontrol.
 Font → Name Identifies the typeface of the font.
 Font → Size Specifies the height of the font in points.
 Font → Style Determines whether the font is normal, italic, underlined, bold, and so on.
 Name Specifies the name of the component.
 Left Specifies the horizontal coordinate of the left edge of a component relative to its parent.
 Top Specifies the Y coordinate of the upper-left corner of a control, relative to its parent or containing control in pixels.
 Width Specifies the horizontal size of the control in pixels.
 Height Specifies the vertical size of the control in pixels.
 TabOrder Indicates the position of the control in its parent's tab order.
 TabStop Determines if the user can tab to a control.
 Visible Specifies whether the component appears onscreen.
 Anchors Specifies how the control is anchored to its parent. More info.

Additional properties
 Property Description
 BiDiMode Specifies the bi-directional mode for the component.
 Constraints Specifies the size constraints for the component. It makes sense when using the Anchors property.
 Cursor Specifies the image used to represent the mouse pointer when it passes into the region covered by the component.
 Enabled Controls whether the component responds to mouse and keyboard events.
 Hint Hint contains the text string that appears when the user moves the mouse over the component. The hint will be shown if the ShowHint property = True
 HotTrack Determines whether labels on the tab under the mouse are automatically highlighted.
 Multiline Determines whether the tabs can appear on more than one row.
 RaggedRight Specifies whether rows of tabs stretch to fill the width of the control.
 ScrollOpposite Determines how the rows of tabs are scrolled in a multi-line tab control. Makes sense if the Multiline property = True
 ShowHint Determines whether the control displays a Help Hint when the mouse pointer rests momentarily on the component. See also property Hint
 TabIndex Identifies the selected tab on a tab control.

Created with the Standard Edition of HelpNDoc: Full-featured EPub generator

GroupBox

https://www.helpndoc.com/create-epub-ebooks

My Visual Database

100 / 222

Description
The GroupBox component represents a standard Windows group box, used to group related controls on
a form.

Component properties
 Property Description
 Caption Specifies a text string that identifies the control to the user.
 Font → Color Specifies the font color to use when displaying the text. Starting with Windows Vista, you cannot change the font color for a groupbox.
 Font → Name Identifies the typeface of the font.
 Font → Size Specifies the height of the font in points.
 Font → Style Determines whether the font is normal, italic, underlined, bold, and so on.
 Name Specifies the name of the component.
 Left Specifies the horizontal coordinate of the left edge of a component relative to its parent.
 Top Specifies the Y coordinate of the upper-left corner of a control, relative to its parent or containing control in pixels.
 Width Specifies the horizontal size of the control in pixels.
 Height Specifies the vertical size of the control in pixels.
 TabOrder Indicates the position of the control in its parent's tab order.
 Visible Specifies whether the component appears onscreen.
 Anchors Specifies how the control is anchored to its parent. More info.

Additional properties
 Property Description
 BiDiMode Specifies the bi-directional mode for the component.
 Constraints Specifies the size constraints for the component. It makes sense when using the Anchors property.
 Cursor Specifies the image used to represent the mouse pointer when it passes into the region covered by the component.
 Enabled Controls whether the component responds to mouse and keyboard events.
 Hint Hint contains the text string that appears when the user moves the mouse over the component. The hint will be shown if the ShowHint property = True
 ShowHint Determines whether the control displays a Help Hint when the mouse pointer rests momentarily on the component. See also property Hint

Created with the Standard Edition of HelpNDoc: iPhone web sites made easy

Panel

Description
Use Panel to put an empty panel on a form. Panels have properties for providing a beveled border
around the control, as well as methods to help manage the placement of child controls embedded in the
panel.

Component properties
 Property Description
 BgColor Specifies the background color of the control.
 Name Specifies the name of the component.
 Left Specifies the horizontal coordinate of the left edge of a component relative to its parent.
 Top Specifies the Y coordinate of the upper-left corner of a control, relative to its parent or containing control in pixels.
 Width Specifies the horizontal size of the control in pixels.
 Height Specifies the vertical size of the control in pixels.

https://www.helpndoc.com/feature-tour/iphone-website-generation

My Visual Database

101 / 222

 TabOrder Indicates the position of the control in its parent's tab order.
 Visible Specifies whether the component appears onscreen.
 Anchors Specifies how the control is anchored to its parent. More info.

Additional properties
 Property Description
 AutoSize Specifies whether the control sizes itself automatically to accommodate its contents.
 BiDiMode Specifies the bi-directional mode for the component.
 BevelInner Specifies the cut of the inner bevel.
 BevelKind Specifies the control's bevel style.
 BevelOuter Specifies the cut of the outer bevel.
 BevelWidth Determines the width, in pixels, of both the inner and outer bevels of a panel.
 BorderStyle Determines whether the edit component has a single line border around the client area.
 BorderWidth Specifies the distance, in pixels, between the outer and inner bevels.
 Caption Specifies a text string that identifies the control to the user.
 Constraints Specifies the size constraints for the component. It makes sense when using the Anchors property.
 Cursor Specifies the image used to represent the mouse pointer when it passes into the region covered by the component.
 Enabled Controls whether the component responds to mouse and keyboard events.
 Font → Color Specifies the font color to use when displaying the text.
 Font → Name Identifies the typeface of the font.
 Font → Size Specifies the height of the font in points.
 Font → Style Determines whether the font is normal, italic, underlined, bold, and so on.
 Hint Hint contains the text string that appears when the user moves the mouse over the component. The hint will be shown if the ShowHint property = True
 ShowCaption Specifies whether to display the caption of the panel control.
 ShowHint Determines whether the control displays a Help Hint when the mouse pointer rests momentarily on the component. See also property Hint
 VerticalAlignment Sets the vertical position of the caption.

Created with the Standard Edition of HelpNDoc: Free EBook and documentation generator

property Anchors

Purpose

Specifies how the control is anchored to its parent.

Description

Use Anchors to ensure that a control maintains its current position relative to an edge of its parent, even if
the parent is resized. When its parent is resized, the control holds its position relative to the edges to
which it is anchored.

The property is 4 switchable checkboxes: Left, Top, Right, Bottom.

https://www.helpndoc.com

My Visual Database

102 / 222

By default, only Left and Top are set.

If a control is anchored to opposite edges of its parent, the control stretches when its parent is resized.
For example, if a control has its Anchors property set to Left, Right, the control stretches when the width
of its parent changes.

Created with the Standard Edition of HelpNDoc: Free help authoring environment

Access control

Created with the Standard Edition of HelpNDoc: Produce online help for Qt applications

Introduction

Access control allows you to create a multi-user interface, where each group of users has access only to
certain parts of the application or information.

· Setting up roles
· Setting up the user interface
· Setting up columns in the TableGrid component
· Access control to information
· Users creation

Created with the Standard Edition of HelpNDoc: Easily create iPhone documentation

Setting up Roles

Setting up Roles

https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
https://www.helpndoc.com/feature-tour/iphone-website-generation

My Visual Database

103 / 222

Access Control is used to create roles for users. You can therefore restrict access to certain buttons, input
fields, table columns or hide certain information.

 To enable access control in your project, click this button.

Check "Enable Role-based access control" and create the necessary roles.

Two tables in the database will be automatically created: "_user" and "_role". These tables are system
tables and as a rule you will not have to interact with these database tables directly. You can only delete
these tables after you have disabled Access Control for your project.

Next: Setting up the user interface

Created with the Standard Edition of HelpNDoc: Free Kindle producer

Setting up the user interface

Setting up the user interface

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

My Visual Database

104 / 222

Once you have enabled and created roles, you can start configuring the interface for your project. For this,
each component now has a "Roles" section.

Configure access for the "Button" component

In the "Roles" component property, select the roles. Thus, only users belonging to one of these roles will
be able to access this component. If component roles are not selected, all users will have access to this
component without any restrictions.

You can also choose how to restrict access to the component. The Behavior property is responsible for
this, the following options are available:

· rbbDisabled - the component will be visible but inactive

· rbbHide - the component will be invisible

· rbbShowMessage - the component will be active. If the user does not have access to this button,
instead of executing an action or script, he will receive a particular message in the "Message"
property. If the message text is not specified in the "Message" property, the default message "Access
denied" will be displayed.

My Visual Database

105 / 222

The configuration of the remaining components is similar except for the "Behavior" property.

Properties "Behavior" of the components::

· ribDisabled - the component will be visible but inactive
· ribHide - the component will be invisible
· ribReadOnly - the component will be visible, but the option to edit the information it contains is

disabled. You can copy text from the component to the clipboard.

Properties "Behavior" of the components:

· rsbDisabled - the component will be visible but inactive
· rsbHide - the component will be invisible

Next: Setting up columns in the TableGrid component

Created with the Standard Edition of HelpNDoc: Produce electronic books easily

Setting up columns in the TableGrid component

Setting up columns in the TableGrid component

Depending on the role of the user, you can hide the columns of this component.
Just select the roles for which this column will be available. If no role is selected, the column will be
available to all users.

https://www.helpndoc.com/create-epub-ebooks

My Visual Database

106 / 222

From the "Behavior" drop-down list, you can choose "Hide" or "Read Only".

If you select Read Only, the column will not be hidden, but if the ability to edit data is enabled for this
component (Editable property), then the ability to edit data for users who do not have the required role
will be disabled for this column.

Next: Access control to information

Created with the Standard Edition of HelpNDoc: Generate Kindle eBooks with ease

Access Control to Information

Access Control to Information

In addition, you can hide entries in the components TableGrid and ComboBox, that the user should not
see.

For this, the Roles component property has a Data Filter subkey in which you can write for each role a
condition for filtering records. The syntax of the condition is similar to that of the SQL query language of
the WHERE clause.

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

My Visual Database

107 / 222

Example

Suppose you have a database of documents. Each document is given its importance: "High", "Medium",
"Low". We make sure that:

· a user with the role "User" can only see documents with the importance of "Low".

· a user with the role "Manager" will see the documents with the importance of "Medium" and "Low".

· a user with the role "Director" will see all documents.

 This is what the structure of the document database looks like and the data it contains.

Setting up the TableGrid component will look like this:

For the Director role we leave the field empty, so this role will have access to any documents.

For the Manager role, list the document importance identifiers, so this role will have access to documents
of Medium and Low importance.

For the User role, only documents with a Importance ID of 3 will be available, which corresponds to
documents of Low importance.

This setting is also acceptable

My Visual Database

108 / 222

But this has several disadvantages:

1. The field "level.name" must be present in the settings of the component "TableGrid"

2. If you change the type of importance, for example from "Low" to "Minor", you will need to correct the
condition.

3. Work more slowly.

Users with the "Director" role can see all documents, so there is no requirement for data filtering.

The "ComboBox" component is configured in the same way.

Next: Users creation

Created with the Standard Edition of HelpNDoc: Full-featured Kindle eBooks generator

Users creation

Users creation

After configuring the roles and user interface, you must create users. For each user, you must select his
role, thus determining the actions he can perform in your program.

The first time you start your project, an administrator user is automatically created with username: admin,
password: admin (don't forget to change the password).

An administrator user is needed to create, modify or delete users. The administrator can give administrator
rights to another user. Administrator has access to all functionality of your program without any limitations.

Creation of users is performed in the launched project through the menu "Options" > "Users", this menu is
available only to users with administrator rights.

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

My Visual Database

109 / 222

To create a new user, click on the "New user" button.

When creating a user, do not forget to choose their role, thus determining their ability to interact with your
program.

My Visual Database

110 / 222

Created with the Standard Edition of HelpNDoc: Easy EBook and documentation generator

Web access via browser

Created with the Standard Edition of HelpNDoc: Free EPub producer

Webgrid

The application allows you to organize simple access to your database data via a browser. Only basic data
operations, such as creating/editing/deleting records (CRUD) and search with output to a table will be
available.

You can use this link to test this feature:
http://myvisualdatabase.com/webgrid/

To use this functionality, your project must use DBMS MySQL. Read more about this here.

In addition, you need the simplest Web hosting, for example: https://www.hetzner.com/webhosting

It is assumed that you have already created the necessary structure of the database, only after that you can
start creating web access.

Go to the menu: Project > WebGrid

This tool allows you to create web access to any number of tables in your database. Click the "Add new
WebGrid" button.
In the figure below you can see an example of how to set up a web table.

https://www.helpndoc.com
https://www.helpndoc.com/create-epub-ebooks
http://myvisualdatabase.com/webgrid/
https://www.hetzner.com/webhosting

My Visual Database

111 / 222

You can click the "Add new WebGrid" button again to create the necessary number of web tables that will
be available in the browser through tabs.

After setting up all the web tables you need, click the "Save..." button, then the program will ask you to
specify the folder on your computer where will be saved the files (php+css+html) that you will need to upload
to your web server.

Created with the Standard Edition of HelpNDoc: Free CHM Help documentation generator

Script

https://www.helpndoc.com

My Visual Database

112 / 222

Created with the Standard Edition of HelpNDoc: Free EBook and documentation generator

Introduction

Scripts allow you to implement almost any application logic, interact with visual components and the
database.
In addition, there are a large number of classes with different purposes, such as file management,
graphics, timers, etc.

At the same time, you can create a full-fledged accounting program without using scripts.

In order to use scripts in your project, you just need to click on the button on the toolbar, after that
the "Script" tab will appear, where you will write scripts. You will also see an additional "Events" tab in the
"Object inspector" panel.

The figure shows an example of a simple script that shows a greeting message when the project starts,
and also shows a greeting when the Button1 button is pressed.

Quite often you will need to use events from various components. Let's look at an example.

Note the event handler: procedure Form1_Button1_OnClick (Sender: string; var Cancel: boolean);

It was created as follows, go to the tab "Events", and double-click on the blank line, opposite the event you
want, in our case OnClick.

The name of the procedure for the event will be generated automatically, and now between the keywords

https://www.helpndoc.com

My Visual Database

113 / 222

begin and end; you can write the necessary script that will be executed when this event occurs, for
example, when the user clicks on this button.

Each visual component has many kinds of events with which you can implement the program behavior you
want.

Created with the Standard Edition of HelpNDoc: Produce Kindle eBooks easily

Pascal language

The script is a fairly popular programming language Object Pascal, which is used in the Delphi programming
environment. You can easily find many self-study guides on the Internet for this programming language.

Below you will find useful links for learning:

http://www.marcocantu.com/epascal/
http://101.lv/learn/delphi/
http://www.delphibasics.co.uk/
http://delphi.about.com/od/beginners/a/dbeginner6.htm
http://www.delphibasics.co.uk/Article.asp?Name=FirstPgm
https://blog.udemy.com/pascal-programming/

Created with the Standard Edition of HelpNDoc: Full-featured Documentation generator

Component Properties, Methods and Events

Created with the Standard Edition of HelpNDoc: Easily create HTML Help documents

Form

Description

Form represents a standard application window (form).

Class: TAForm

Properties
 Property Type Description

 dbAction String Contains the name of the action of the button with which the form was called. Possible values: NewRecord, ShowRecord, ShowForm. An
empty value indicates that the form was opened with a script. Read-only property.

 AlphaBlend Boolean Specifies whether the form is translucent. Works since Windows 2000
 AlphaBlendValue Integer Specifies the degree of translucency on a translucent form. The value is from 0 to 255.
 AutoScroll Boolean Indicates whether scroll bars appear automatically on the scrolling windowed control if it is not large enough to display all of its controls.
 AutoSize Boolean Specifies whether the control sizes itself automatically to accommodate its contents.
 BorderIcons TBorderIcons Specifies which icons appear on the title bar of the form. More info.
 BorderStyle TBorderStyle Specifies the appearance and behavior of the form border. More info.
 Canvas TCanvas Provides access to the drawing area of the form. More info.
 Caption String Window caption.
 CalledForm TAForm Reference to the form from which the current form was called. Contains an empty value if the form was called with a script.

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle
http://www.marcocantu.com/epascal/
http://101.lv/learn/delphi/
http://www.delphibasics.co.uk/
http://delphi.about.com/od/beginners/a/dbeginner6.htm
http://www.delphibasics.co.uk/Article.asp?Name=FirstPgm
https://blog.udemy.com/pascal-programming/
https://www.helpndoc.com
https://www.helpndoc.com/feature-tour

My Visual Database

114 / 222

 ClientWidth Integer Specifies the horizontal size of the form's client area in pixels (without borders and form header).
 ClientHeight Integer Specifies the height of the form's client area in pixels (without borders and form header).
 Color TColor Specifies the background color of the control. More info.
 ComponentCount Integer Indicates the number of components owned by the component.
 Components[i] TComponent Allows you to refer to a component on a form by its index.
 ControlCount Integer Returns the number of child controls.
 Controls[i] TControl Allows you to refer to a child component on a form by its index.
 Constraints TSizeConstraints Specifies the size constraints for the control. More info.
 Cursor TCursor Specifies the image used to represent the mouse pointer when it passes into the region covered by the control. More info.
 Enabled Boolean Controls whether the control responds to mouse, keyboard, and timer events.
 Font TFont Allows you to set font name, size, color and style. More info.
 FormStyle TFormStyle Determines the form's style. Values: fsNormal, fsMDIChild, fsMDIForm, fsStayOnTop
 HorzScrollBar TControlScrollBar Configuring the appearance and behavior of horizontal scrolling, see also property AutoScroll. More info.
 KeyPreview Boolean Specifies whether the form should receive keyboard events before the active control.
 Name String The name of the form.
 Tag Integer Allows you to assign a number to a component for your own needs.
 TagString String Allows you to assign a string to a component for your own needs.
 TransparentColor Boolean Specifies whether a color on the form appears transparent.
 TransparentColorValue TColor Indicates the color on the form that appears transparent when TransparentColor is true.
 VertScrollBar TControlScrollBar Configuring the appearance and behavior of the vertical scrolling, see also property AutoScroll. Подробней.
 Visible Boolean Specifies whether the form appears onscreen.
 WindowState TWindowState Represents how the form appears on the screen. Values: wsNormal, wsMinimized, wsMaximized
 Left Integer Specifies the horizontal coordinate of the left edge of a form relative to the screen.
 Top Integer Specifies the Y coordinate of the upper-left corner of a form, relative to the screen.
 Width Integer Specifies the horizontal size of the form in pixels.
 Height Integer Specifies the vertical size of the form in pixels.

Methods
 Method Description
 function CanFocus: Boolean Indicates whether a control can receive focus. Usually the property is used together with the SetFocus method. Example: if Form1.CanFocus then Form1.SetFocus;
 procedure Close Closes the form.
 function FindComponent (const AName: string): TComponent Indicates whether a given component is owned by the component. Component name matches are not case sensitive. If no component is found, it returns nil.
 procedure Hide Hides the form.
 procedure NewRecord (ParentTable: string = ''; ParentTableID: integer = -1) Prepares and shows the form on the screen for creating a new record. Similarly, if the forms were called by the button with the "New Record" action.
 procedure ScaleBy (M, D: Integer) Rescale control and its children.
 procedure SetFocus Sets focus to the form.
 procedure SetFocusNextControl Passes the input focus to the next component on the form.
 procedure Show Shows the form.

 procedure ShowModal Use ShowModal to show a form as a modal form. A modal form is one where the application can't continue to run until the form is closed. Thus, ShowModal does not
return until the form closes.

 procedure ShowRecord (TableName: string; id: integer) Displays a form with data from the database for the specified record.

Events
 Event Description

My Visual Database

115 / 222

 OnClick Occurs when the user clicks the control.
 OnClose Occurs when the form closes.
 OnDoubleClick Occurs when the user double-clicks the left mouse button when the mouse pointer is over the form.
 OnKeyDown Occurs when a user presses any key while the form has focus.
 OnKeyPress Occurs when a key is pressed. Note that this procedure handles printable characters only.
 OnKeyUp Occurs when the user releases a key that was pressed.
 OnMouseDown Occurs when the user presses a mouse button with the mouse pointer over a form.
 OnMouseEnter Occurs when the user moves the mouse into a form.
 OnMouseLeave Occurs when the user moves the mouse outside of a form.
 OnMouseMove Occurs when the user moves the mouse pointer while the mouse pointer is over a form.
 OnMouseUp Occurs when the user releases a mouse button that was pressed with the mouse pointer over a form.
 OnResize Occurs immediately after the form is resized.
 OnDropFiles Occurs when user tries to drag and drop a file from explorer to a form. More info.
 OnShow Occurs when the form is shown (that is, when its Visible property is set to true).

Created with the Standard Edition of HelpNDoc: Easily create Web Help sites

BorderIcons

Type

TBorderIcons

Description

Specifies which icons appear on the title bar of the form.

biSystemMenu - the form has a Control menu (also known as a System menu)
biMinimize - the form has a Minimize button
biMaximize - the form has a Maximize button
biHelp - If BorderStyle is bsDialog or biMinimize and biMaximize are excluded, a question mark appears in
the form's title bar and when clicked, the cursor changes to crHelp; otherwise,no question mark appears.

These values can be combined with the + sign

Example

Form1.BorderIcons:= biSystemMenu + biMinimize;
Form1.BorderIcons:= biSystemMenu + biMaximize;
Form1.BorderIcons:= 0; // allows you to hide all the system window buttons

Created with the Standard Edition of HelpNDoc: Full-featured Documentation generator

BorderStyle

https://www.helpndoc.com/feature-tour
https://www.helpndoc.com

My Visual Database

116 / 222

Type

TBorderStyle

Description

Specifies the appearance and behavior of the form border.

The following values are available:

bsDialog - not resizable; no minimize/maximize menu
bsNone - not resizable; no visible border line
bsSingle - not resizable; minimize/maximize menu
bsSizeable - standard resizable border
bsSizeToolWin - like bsSizeable with a smaller caption
bsToolWindow - like bsSingle but with a smaller caption

Example

Form1.BorderStyle := bsDialog;

Created with the Standard Edition of HelpNDoc: Free CHM Help documentation generator

TControlScrollBar

Description

The class allows you to set parameters for scrollbars on a form.

The class has the following properties

 Property Description
 IsScrollBarVisible: Boolean Returns true if the scroll bar is visible.
 ScrollPos: Integer Indicates the position of the thumb tab.
 ButtonSize: Integer Specifies the sizes of the buttons in the scroll bar.
 Position: Integer Specifies the position of the thumb tab on the scroll bar.
 Range: Integer Determines how far the scrolling region of the associated control can move.
 Tracking: Boolean Determines whether the form or scroll box moves before the thumb tab is released.
 Visible: Boolean Determines whether the scroll bar appears.

Exampple

Form1.HorzScrollBar.Position := 100;
Form1.VertScrollBar.Tracking := True;

https://www.helpndoc.com

My Visual Database

117 / 222

Created with the Standard Edition of HelpNDoc: Easy to use tool to create HTML Help files and Help web sites

Label

Description

Use Label to add text that the user cannot edit on a form. This text can be used to label another control.

Class: TdbLabel

Properties
 Property Type Description
 AutoSize Boolean Determines whether the size of the label automatically resizes to accommodate the text.
 Caption String Specifies a text string that identifies the control to the user.
 Cursor TCursor Specifies the image used to represent the mouse pointer when it passes into the region covered by the control. More info.
 Enabled Boolean Controls whether the component responds to mouse, keyboard, and timer events.
 Font TFont Allows you to set font name, size, color and style. More info.
 Hint String Hint contains the text string that appears when the user moves the mouse over the component, see also ShowHint
 Name String The name of the component.
 ShowHint Boolean Specifies whether to show the Help Hint when the mouse pointer moves over the component, see also Hint
 Tag Integer Allows you to assign a number to a component for your own needs.
 TagString String Allows you to assign a string to a component for your own needs.
 Visible Boolean Specifies whether the component appears onscreen.
 WordWrap Boolean Specifies whether the label text wraps when it is too long for the width of the label.
 Left Integer Specifies the horizontal coordinate of the left edge of a component relative to its parent.
 Top Integer Specifies the vertical coordinate of the upper-left of a component relative to its parent.
 Width Integer Specifies the horizontal size of the component in pixels.
 Height Integer Specifies the vertical size of the component in pixels.

Events
 Event Description
 OnClick Occurs when the user clicks the component.
 OnDoubleClick Occurs when the user double-clicks the left mouse button when the mouse pointer is over the component.
 OnMouseDown Occurs when the user presses a mouse button with the mouse pointer over a component.
 OnMouseEnter Occurs when the user moves the mouse into a component.
 OnMouseLeave Occurs when the user moves the mouse outside of a component.
 OnMouseMove Occurs when the user moves the mouse pointer while the mouse pointer is over a component.
 OnMouseUp Occurs when the user releases a mouse button that was pressed with the mouse pointer over a component.

Created with the Standard Edition of HelpNDoc: Easily create Help documents

Button

https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/feature-tour

My Visual Database

118 / 222

Description

The component is used to perform actions when the user clicks on it.

Class: TdbButton

Properties
 Property Type Description
 dbGeneralTableId Integer Makes sense if the button has the "Save record" action assigned to it. Contains the record id, if the record is not saved, it returns -1.
 dbGeneralTable String It makes sense if the button has a "Search", "Save Record" or "Report" action. Contains the name of the main database table.
 dbGetSqlStatement String Makes sense if the button has a "Search" or "Report" action. Contains the last automatically generated SQL query.
 dbParentTableId Integer Makes sense if the button has a "Save record" action. Contains the id of the child record, if the record is not saved, it returns -1.
 dbParentTable Integer Makes sense if the button has a "Save record" action. Contains the name of the child database table.
 dbSQL String It makes sense if the button has an "SQL query" or "Report (SQL)" action assigned to it. To access the SQL query.
 dbFilter String Makes sense if the button has a "Search" or "Report" action. Allows you to set an additional filter for a query to the database. For example: tablename.fieldname = 1

 dbReportFile String Makes sense if the button has a Report or Report (SQL) action assigned to it. Name of the template file for the report. If the absolute path of the file is not specified, it means
that the file is located in the Report folder of your project.

 dbReportResultFile String Makes sense if the button has a Report or Report (SQL) action assigned to it. Allows you to set the file name for the generated report.

 dbReportOpenIn TReportOpenIn Makes sense if the button has a Report or Report (SQL) action assigned to it. Allows you to set the action after the report is created. Values: rpoPreview, rpoPrint,
rpoPrintQuick, rpoExcel, rpoWord, rpoPDF, rpoHTML, rpoODT, rpoODS, rpoJPEG, rpoTIFF, rpoDesigner

 dbActionType TActionDbType Defines the action of the button. Available values: adbNone, adbSearch, adbNewRecord, adbSaveRecord, adbShowRecord, adbDelete, adbSQL, adbReportNoSQL, adbReport,
adbShowForm, adbCloseForm, adbGridToExcel

 dbDoCloseForm Boolean Makes sense if the button has a "Save Record" action assigned to it. Determines whether the form will be closed after the button is clicked.
 dbDontResetID Boolean Makes sense if the button has a "Save Record" action assigned to it. Determines whether the record id in the dbGeneralTableId property will be saved after the record is saved.
 Cancel Boolean Determines whether the button is automatically pressed when the user on the form presses the Escape button.

 CanFocus Boolean

 It checks if the component can get input focus, which is usually necessary before using the SetFocus method. If a component has Visible = False or Enabled = False property, or
if the component is located on a parent component with those properties, using the SetFocus method will cause an error.

example: if Form1.Button1.CanFocus then Form1.Button1.SetFocus;
 Cursor TCursor Specifies the image used to represent the mouse pointer when it passes into the region covered by the control. More info.
 Caption String Specifies a text string that identifies the control to the user.
 Default Boolean Determines whether the button is automatically pressed when the Enter key is pressed if the input focus is located in a component for entering information.
 Enabled Boolean Controls whether the component responds to mouse, keyboard, and timer events.
 Focused Boolean Determines whether the control has input focus.
 Font TFont Allows you to set font name, size, color and style. More info.
 Hint String Hint contains the text string that appears when the user moves the mouse over the component., see also ShowHint
 ImageMargins TImageMargins Margins of image on button. Example: Form1.Button1.ImageMargins.Left := 10; available properties: Left, Top, Right, Bottom
 Name String The name of the component.
 ShowHint Boolean Specifies whether to show the Help Hint when the mouse pointer moves over the component, see also Hint
 Tag Integer Allows you to assign a number to a component for your own needs.
 TagString String Allows you to assign a string to a component for your own needs.
 TabOrder Integer Indicates the position of the component in its parent's tab order. TabOrder is the order in which child components are visited when the user presses the Tab key.
 TabStop Boolean Determines whether the user can tab to a control. Use the TabStop to allow or disallow access to the control using the Tab key.
 Visible Boolean Specifies whether the component appears onscreen.
 WordWrap Boolean Specifies whether the button text wraps to fit the width of the control.
 Left Integer Specifies the horizontal coordinate of the left edge of a component relative to its parent.
 Top Integer Specifies the vertical coordinate of the upper-left of a component relative to its parent.

My Visual Database

119 / 222

 Width Integer Specifies the horizontal size of the component in pixels.
 Height Integer Specifies the vertical size of the component in pixels.

Methods
 Method Description
 procedure Click Allows you to click the button, thereby performing the action specified in the Action (dbActionType) property, as well as in the OnClick and OnAfterClick events
 procedure SetFocus Gives the input focus to the component.

Events
 Event Description
 OnClick Occurs when the user clicks the component. The event also allows you to prevent the selected action for the button. More info.
 OnAfterClick Occurs when you click on the component after the action specified for the button. If no action is specified for the button, the event is not called.
 OnEnter Occurs when a component receives the input focus.
 OnExit Occurs when the input focus shifts away from one component to another.
 OnKeyDown Occurs when a user presses any key while the form has focus.
 OnKeyPress Occurs when a key is pressed. Note that this procedure handles printable characters only.
 OnKeyUp Occurs when the user releases a key that was pressed.
 OnMouseDown Occurs when the user presses a mouse button with the mouse pointer over a component.
 OnMouseEnter Occurs when the user moves the mouse into a component.
 OnMouseLeave Occurs when the user moves the mouse outside of a component.
 OnMouseMove Occurs when the user moves the mouse pointer while the mouse pointer is over a component.
 OnMouseUp Occurs when the user releases a mouse button that was pressed with the mouse pointer over a component.
 OnDropFiles Occurs when user tries to drag and drop a file from explorer to a form. More info.

Created with the Standard Edition of HelpNDoc: Free help authoring tool

OnClick

Description

Occurs when the user clicks the component. The event also allows you to prevent the selected action for
the button.

Examples

procedure Form1_Button1_OnClick (Sender: TObject; var Cancel: boolean);
begin
 Cancel := True; // If the Cancel parameter is set to True, the action that
is assigned to the button will not be executed
end;

https://www.helpndoc.com/help-authoring-tool

My Visual Database

120 / 222

procedure Form1_Button1_OnClick (Sender: TObject; var Cancel: boolean);
begin
 if IDNO = MessageBox('Execute an action?', 'Caption',
MB_YESNO+MB_ICONQUESTION) then // If the user clicked No
 begin
 Cancel := True; // If the Cancel parameter is set to True, the action
that is assigned to the button will not be executed
 end;
end;

Created with the Standard Edition of HelpNDoc: Create iPhone web-based documentation

Edit

Description

The component is used to input and output text/numeric information.

Class: TdbEdit

Properties
 Property Type Description

 sqlValue String

 Returns the value of a component, for use in SQL queries. The property value already contains escape quotes. If the component is set to NumbersOnly = True or
Currency = True, the escape quotes will be omitted. In case of an empty value, it will return NULL

 example: SQLExecute ('INSERT INTO tablename (fieldname) VALUES ('+Form1.Edit1.sqlValue+')');
 Alignment TAlignment Determines how the text is aligned within the text edit control. Available values: taCenter, taRightJustify, taLeftJustify
 AutoSelect Boolean Determines whether all the text in the edit control is automatically selected when the control gets focus.
 BorderStyle TBorderStyle Determines whether the edit control has a single line border around the client area. Available values: bsSingle, bsNone

 CanFocus Boolean

 It checks if the component can get input focus, which is usually necessary before using the SetFocus method. If a component has Visible = False or Enabled =
False property, or if the component is located on a parent component with those properties, using the SetFocus method will cause an error.

example: if Form1.Edit1.CanFocus then Form1.Edit1.SetFocus;
 CharCase TEditCharCase Determines the case of the text within the edit control. Available values: ecNormal, ecUpperCase, ecLowerCase
 Color TColor Specifies the background color of the control. More info.
 Cursor TCursor Specifies the image used to represent the mouse pointer when it passes into the region covered by the control. More info.
 dbFilter String It makes sense when the component is used together with the button with the "Search" action. More info.
 dbTable String Determines which database table a component belongs to.
 dbField String Determines which field of the database table this component belongs to.

 dbIncremSearch String Allows you to specify the name of the button on the current form with the "Search" or "SQL query" action, which will be automatically pressed when the user enters
text for instant search.

 Enabled Boolean Controls whether the component responds to mouse, keyboard, and timer events.
 Focused Boolean Determines whether the control has input focus.
 Font TFont Allows you to set font name, size, color and style. More info.
 GetTextLen Integer Returns the length of the control's text.

https://www.helpndoc.com/feature-tour/iphone-website-generation

My Visual Database

121 / 222

 Hint String Hint contains the text string that appears when the user moves the mouse over the component., see also ShowHint
 MaxLength Integer Specifies the maximum number of characters the user can enter into the edit component.
 Name String The name of the component.
 NumbersOnly Boolean Allows only numbers to be typed into the text edit.

 PasswordChar String Indicates the character, if any, to display in place of the actual characters typed in the control. Usually used to enter a password. As a rule, the asterisk symbol is
used: *

 ReadOnly Boolean Determines whether the user can change the text of the edit component.
 ShowHint Boolean Specifies whether to show the Help Hint when the mouse pointer moves over the component, see also Hint
 SelLength Integer Specifies the number of characters that are selected.
 SelStart Integer Specifies the position of the first selected character in the text. If there is no selected text, SelStart indicates the position of the cursor.
 SelText String Specifies the selected portion of the edit component's text.
 TabOrder Integer Indicates the position of the component in its parent's tab order. TabOrder is the order in which child components are visited when the user presses the Tab key.
 TabStop Boolean Determines whether the user can tab to a control. Use the TabStop to allow or disallow access to the control using the Tab key.
 Tag Integer Allows you to assign a number to a component for your own needs.
 TagString String Allows you to assign a string to a component for your own needs.
 Text String Contains a text string associated with the component.
 TextHint String A hint or message to be displayed when the Text property is empty.
 Value Double The numerical value of the component.
 Visible Boolean Specifies whether the component appears onscreen.
 Left Integer Specifies the horizontal coordinate of the left edge of a component relative to its parent.
 Top Integer Specifies the vertical coordinate of the upper-left of a component relative to its parent.
 Width Integer Specifies the horizontal size of the component in pixels.
 Height Integer Specifies the vertical size of the component in pixels.

Methods
 Method Description
 procedure Clear Deletes all text from the edit component.
 procedure CopyToClipboard Copies the selected text in the edit component to the Clipboard.
 procedure CutToClipboard Copies the selected text to the Clipboard and then deletes the selection.
 procedure PasteFromClipboard Pastes the contents of the Clipboard into edit component, replacing the current selection.
 procedure SelectAll Selects all text in the edit component.
 procedure SetFocus Gives the input focus to the component.

Events
 Event Description
 OnChange Occurs when the text for the edit component may have changed.
 OnClick Occurs when the user clicks the component.
 OnDoubleClick Occurs when the user double-clicks the left mouse button when the mouse pointer is over the component.
 OnEnter Occurs when a component receives the input focus.
 OnExit Occurs when the input focus shifts away from one component to another.
 OnKeyDown Occurs when a user presses any key while the form has focus.
 OnKeyPress Occurs when a key is pressed. Note that this procedure handles printable characters only.
 OnKeyUp Occurs when the user releases a key that was pressed.
 OnMouseDown Occurs when the user presses a mouse button with the mouse pointer over a component.

My Visual Database

122 / 222

 OnMouseEnter Occurs when the user moves the mouse into a component.
 OnMouseLeave Occurs when the user moves the mouse outside of a component.
 OnMouseMove Occurs when the user moves the mouse pointer while the mouse pointer is over a component.
 OnMouseUp Occurs when the user releases a mouse button that was pressed with the mouse pointer over a component.
 OnDropFiles Occurs when user tries to drag and drop a file from explorer to a form. More info.

Created with the Standard Edition of HelpNDoc: Full-featured Documentation generator

Memo

Description

The component is used to input and output multiline text information.

Class: TdbMemo

Properties
 Property Type Description

 sqlValue String
 Returns the value of a component, for use in SQL queries. The property value already contains escape quotes. In case of empty value, it returns NULL string.

 example: SQLExecute ('INSERT INTO tablename (fieldname) VALUES ('+Form1.Memo1.sqlValue+')');
 Alignment TAlignment Determines how the text is aligned within the text edit control. Available values: taCenter, taRightJustify, taLeftJustify
 AutoSelect Boolean Determines whether all the text in the component is automatically selected when the component gets focus.
 BorderStyle TBorderStyle Determines whether the edit control has a single line border around the client area. Available values: bsSingle, bsNone

 CanFocus Boolean

 It checks if the component can get input focus, which is usually necessary before using the SetFocus method. If a component has Visible = False or Enabled =
False property, or if the component is located on a parent component with those properties, using the SetFocus method will cause an error.

example: if Form1.Memo1.CanFocus then Form1.Memo1.SetFocus;
 CaretPosX Integer Indicates the X position of the caret in the client area of the memo.
 CaretPosY Integer Indicates the Y position of the caret in the client area of the memo.
 CharCase TEditCharCase Determines the case of the text within the edit control. Available values: ecNormal, ecUpperCase, ecLowerCase
 Color TColor Specifies the background color of the control. More info.
 Cursor TCursor Specifies the image used to represent the mouse pointer when it passes into the region covered by the control. More info.
 dbTable String Determines which database table a component belongs to.
 dbField String Determines which field of the database table this component belongs to.

 dbIncremSearch String Allows you to specify the name of the button on the current form with the "Search" or "SQL query" action, which will be automatically pressed when the user enters
text for instant search.

 Enabled Boolean Controls whether the component responds to mouse, keyboard, and timer events.
 Focused Boolean Determines whether the control has input focus.
 Font TFont Allows you to set font name, size, color and style. More info.
 GetTextLen Integer Returns the length of the component's text.
 Hint String Hint contains the text string that appears when the user moves the mouse over the component., see also ShowHint
 Lines TStringList Class that represent a list of strings. More info.
 Lines[i] String Contains the individual lines of text in the memo component. Examle ShowMessage(Form1.Memo1.Lines[0]); // shows a message with the first line
 MaxLength Integer Specifies the maximum number of characters the user can enter into the memo component.
 Name String The name of the component.

https://www.helpndoc.com

My Visual Database

123 / 222

 ReadOnly Boolean Determines whether the user can change the text of the memo component.
 ScrollBars TScrollStyle Determines whether the memo control has scroll bars. Available values: ssNone, ssHorizontal, ssVertical, ssBoth
 ShowHint Boolean Specifies whether to show the Help Hint when the mouse pointer moves over the component, see also Hint
 SelLength Integer Specifies the number of characters that are selected.
 SelStart Integer Specifies the position of the first selected character in the text. If there is no selected text, SelStart indicates the position of the cursor.
 SelText String Specifies the selected portion of the memo component's text.
 TabOrder Integer Indicates the position of the component in its parent's tab order. TabOrder is the order in which child components are visited when the user presses the Tab key.
 TabStop Boolean Determines whether the user can tab to a control. Use the TabStop to allow or disallow access to the control using the Tab key.
 Tag Integer Allows you to assign a number to a component for your own needs.
 TagString String Allows you to assign a string to a component for your own needs.
 Text String Contains a text string associated with the component.
 TextHint String A hint or message to be displayed when the Text property is empty.
 Visible Boolean Specifies whether the component appears onscreen.
 Left Integer Specifies the horizontal coordinate of the left edge of a component relative to its parent.
 Top Integer Specifies the vertical coordinate of the upper-left of a component relative to its parent.
 Width Integer Specifies the horizontal size of the component in pixels.
 Height Integer Specifies the vertical size of the component in pixels.

Methods
 Method Description
 procedure Clear Deletes all text from the memo component.
 procedure CopyToClipboard Copies the selected text in the memo component to the Clipboard.
 procedure CutToClipboard Copies the selected text to the Clipboard and then deletes the selection.
 procedure PasteFromClipboard Pastes the contents of the Clipboard into memo component, replacing the current selection.
 procedure SaveToFileUTF8 (const FileName: string) Saves the content of the component in a UTF-8 encoded text file.
 procedure SelectAll Selects all text in the memo component.
 procedure SetFocus Gives the input focus to the component.

Events
 Event Description
 OnClick Occurs when the user clicks the component.
 OnDoubleClick Occurs when the user double-clicks the left mouse button when the mouse pointer is over the component.
 OnEnter Occurs when a component receives the input focus.
 OnExit Occurs when the input focus shifts away from one component to another.
 OnKeyDown Occurs when a user presses any key while the form has focus.
 OnKeyPress Occurs when a key is pressed. Note that this procedure handles printable characters only.
 OnKeyUp Occurs when the user releases a key that was pressed.
 OnMouseDown Occurs when the user presses a mouse button with the mouse pointer over a component.
 OnMouseEnter Occurs when the user moves the mouse into a component.
 OnMouseLeave Occurs when the user moves the mouse outside of a component.
 OnMouseMove Occurs when the user moves the mouse pointer while the mouse pointer is over a component.
 OnMouseUp Occurs when the user releases a mouse button that was pressed with the mouse pointer over a component.
 OnDropFiles Occurs when user tries to drag and drop a file from explorer to a form. More info.

My Visual Database

124 / 222

Created with the Standard Edition of HelpNDoc: Generate Kindle eBooks with ease

RichEdit

Description

The component is an advanced text editor with wide possibilities for text formatting. With the ability to
insert graphics files, tables, links, etc. The data storage format is RTF (Rich Text Format).

Class: TdbRichEdit

Properties
 Property Type Description
 dbTable String Determines which database table a component belongs to.
 dbField String Determines which field of the database table this component belongs to.

 sqlValue String
 Returns the value of a component, for use in SQL queries. The property value already contains escape quotes. In case of empty value, it returns NULL string.

 example: SQLExecute ('INSERT INTO tablename (fieldname) VALUES ('+Form1.RichEdit1.sqlValue+')');
 Enabled Boolean Controls whether the component responds to mouse, keyboard, and timer events.
 ItemCount Integer Number of items in the component.
 Name String The name of the component.
 Ruler Boolean Determines the visibility of the rulers.
 SelLength Integer Specifies the number of characters that are selected.
 SelStart Integer Specifies the position of the first selected character in the text. If there is no selected text, SelStart indicates the position of the cursor.
 Modified Boolean Value of this property is True if document was modified
 ReadOnly Boolean Determines whether the user can change the text of the RichEdit component.
 TabOrder Integer Indicates the position of the component in its parent's tab order. TabOrder is the order in which child components are visited when the user presses the Tab key.
 TabStop Boolean Determines whether the user can tab to a control. Use the TabStop to allow or disallow access to the control using the Tab key.
 Text String Contains a text string associated with the component.
 TextRTF String Allows you to retrieve and assign text to a document in RTF format.
 ToolBar1 Boolean Defines the visibility of the first row toolbar.
 ToolBar2 Boolean Defines the visibility of the second row toolbar.
 ToolBar3 Boolean Defines the visibility of the third row toolbar.
 Visible Boolean Specifies whether the component appears onscreen.
 VScrollVisible Boolean Set to False to hide vertical scrollbar.
 WheelStep Integer Defines how much the document will be scrolled when the user turns a mouse wheel. If set to 0, the control ignores mouse wheel messages.
 Left Integer Specifies the horizontal coordinate of the left edge of a component relative to its parent.
 Top Integer Specifies the vertical coordinate of the upper-left of a component relative to its parent.
 Width Integer Specifies the horizontal size of the component in pixels.
 Height Integer Specifies the vertical size of the component in pixels.
 Tag Integer Allows you to assign a number to a component for your own needs.
 TagString String Allows you to assign a string to a component for your own needs.

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

My Visual Database

125 / 222

Methods

 Method Description
 procedure AddHotPicture (const Name: String; gr: TGraphic; ParaNo: Integer = -1; VAlign: TRVVAlign = rvvaBaseline) Adds picture-hyperlink to the end of document. More info.
 procedure AddHyperlink (const s: String; url: String) Adds a link to the end of the document. More info.
 procedure AddNL (const s: String; StyleNo: Integer; ParaNo: Integer = -1) Adds a text element to the end of the document. More info.
 procedure AddPicture (const Name: String; gr: TGraphic; ParaNo: Integer = -1; VAlign: TRVVAlign = rvvaBaseline) Adds a picture to the end of document. More info.
 procedure AddTab (TextStyleNo, ParaNo: Integer) Adds tabulator to the end of document. More info.
 procedure AddTextNL (const s: String; StyleNo, FirstParaNo, OtherParaNo: Integer; AsSingleParagraph: Boolean = False) Adds one or more text lines to the end of document. More info.
 function AppendRTF (const FileName: String): Boolean Adding the contents of an RTF file to a document.
 function AppendRTFFromStream (Stream: TStream): Boolean Adding the contents of an RTF stream to a document. More info.
 function AppendTextA (const FileName: String; StyleNo, ParaNo: Integer; AsSingleParagraph: Boolean): Boolean Adding an ANSI encoded text file to the document. More info.
 function AppendText (const FileName: String; StyleNo, ParaNo: Integer; DefAsSingleParagraph: Boolean): Boolean Adding the contents of a UTF-16 encoded text file to the document. More info.
 function AppendTextFromStreamA (Stream: TStream; StyleNo, ParaNo: Integer; AsSingleParagraph: Boolean): Boolean Adding ANSI encoded text stream content to the document. More info.
 function AppendTextFromStream (Stream: TStream; StyleNo, ParaNo: Integer; DefAsSingleParagraph: Boolean): Boolean Adding the contents of a UTF-16 encoded text stream to the document. More info.
 procedure ApplyTextStyle (TextStyleNo: Integer) Not used.

 function CanFocus: Boolean Indicates whether a control can receive focus. Usually the property is used together with the SetFocus
method. Example: if Form1.RichEdit1..CanFocus then Form1.RichEdit1.SetFocus;

 procedure Clear Clears the document.
 procedure Copy Copies the selected fragment to the Clipboard in all available formats (as text, RVF, RTF and picture)
 procedure CopyImage Copies the selected image to the Clipboard.
 procedure CopyRTF Copies the selected part of the document to the Clipboard as RTF (Rich Text Format).
 procedure CopyText Copies the selected text to the clipboard in UTF-16 encoding.
 procedure CopyTextA Copies the selected text to the clipboard in ANSI encoding.
 procedure DeleteItems (FirstItemNo, Count: Integer) Removes the specified number of items (Count) from the document, starting from the FirstItemNo-th item.
 procedure DeleteSelection Deletes the selected fragment in the editor.
 procedure Deselect Removes the document selection (does not change document).

 function Focused: Boolean Determines whether the control has input focus.

 procedure Format Formats the document. This method must be called to apply the changes that were made by the methods:
AddHotPicture, AddHyperlink, AddNL, AddPicture, etc.

 procedure FormatTail

 Formats a part of document appended after the last call of Format or FormatTail. This method works
properly only if new items were added from new line (as new paragraphs) after the last call of Format or
FormatTail.

It's much more efficient to reformat only a new part of the document than making a full reformatting. This
method is designed specially for chat/log windows.

 procedure Reformat Formats the document while keeping the selection and the cursor position.

 function GetSelectedImage: TGraphic This method returns image, if the selection consist only of one image. If there is nothing selected, or not only
image is selected, this method returns nil. More info.

 function GetSelText: String Returns the selected part of the document as a text.
 procedure InsertHyperlink (const s: String; url: string) Inserts a link at the cursor position. More info.
 function InsertPicture (const Name: String; gr: TGraphic; VAlign: TRVVAlign = rvvaBaseline): Boolean Inserts a picture at the cursor position. More info.
 function InsertRTFFromFileEd (const FileName: String): Boolean Inserts RTF (Rich Text Format) from file FileName in the position of caret.
 function InsertRTFFromStreamEd (Stream: TStream): Boolean Inserts the contents of the RTF stream into the document at the cursor position. More info.
 procedure InsertText (const text: String; CaretBefore: Boolean=False) Inserts text at the cursor position. More info.
 procedure InsertTextEx (const text: String; FontColor: TColor = -1; FontSize: integer = -1; FontStyles: Integer = -1; FontName: string = '') Inserts text at the cursor position with the ability to specify color, size, style and font name. More info.
 function InsertTextFromFileA (const FileName: String): Boolean Inserts into a document the contents of a text file in ANSI encoding.
 function InsertTextFromFile (const FileName: String): Boolean Insert the contents of a UTF-16 encoded text file into the document.
 function LoadHTML (const FileName: String): Boolean Load an HTML file.
 function LoadRTF (const FileName: String): Boolean Appends the content of RTF (Rich Text Format) file FileName to the document.
 function LoadRTFFromStream (Stream: TStream): Boolean Appends the content of RTF (Rich Text Format) stream Stream to the document. More info.

My Visual Database

126 / 222

 function LoadTextA (const FileName: String; StyleNo, ParaNo: Integer; AsSingleParagraph: Boolean): Boolean Append the content of the text file FileName in ANSI encoding to the document. More info.
 function LoadText (const FileName: String; StyleNo, ParaNo: Integer; DefAsSingleParagraph: Boolean): Boolean Append the content of the text file FileName in UTF-16 encoding to the document. More info.
 function LoadTextFromStreamA (Stream: TStream; StyleNo, ParaNo: Integer; AsSingleParagraph: Boolean): Boolean Append ANSI encoded text stream to the document. More info.
 function LoadTextFromStream (Stream: TStream; StyleNo, ParaNo: Integer; DefAsSingleParagraph: Boolean): Boolean Append UTF-16 encoded text stream to the document. More info.
 procedure Paste Pastes document from the Clipboard in the position of caret.
 procedure PasteRTF Inserts RTF (Rich Text Format) from the Clipboard in the position of caret.
 procedure PasteText Insert text in UTF-16 encoding from the Clipboard in the position of caret.
 procedure PasteTextA Insert text in ANSI encoding from the Clipboard in the position of caret.

 function SaveDocX (const FileName: String; SelectionOnly: Boolean = False): Boolean Exports document (or the selected part, if SelectionOnly=True) to the file FileName as DocX (Microsoft Word
format). More info.

 function SaveDocXToStream (Stream: TStream; SelectionOnly: Boolean = False): Boolean Exports document (or the selected part, if SelectionOnly=True) to the stream Stream as DocX (Microsoft
Word format). More info.

 function SaveHTML (FileName, Title: String; ImagesPrefix: String = ''): Boolean Exports document to HTML or XHTML file, using HTML tags like , , <div>, etc and a set of images
(in separate files). More info.

 function SaveHTMLEx (const FileName, Title, ImagesPrefix, ExtraStyles, ExternalCSS: String): Boolean Exports document to HTML or XHTML file, using CSS (Cascading Style Sheets) and a set of images (in
separate files). More info.

 function SaveHTMLToStream (Stream: TStream; const Path, Title, ImagesPrefix: String): Boolean Exports document as HTML or XHTML to the stream Stream, using HTML tags like , , <div>, etc
and creates files for images.

 function SaveRTF (const FileName: String; SelectionOnly: Boolean = False): Boolean Exports document (or the selected part, if SelectionOnly=True) to the file FileName as RTF (Rich Text Format).
More info.

 function SaveRTFToStream (Stream: TStream; SelectionOnly: Boolean = False): Boolean Exports document (or the selected part, if SelectionOnly=True) to the Stream as RTF (Rich Text Format). More
info.

 function SaveText (const FileName: String; LineWidth: Integer = 0): Boolean Exports document to UTF-16 text file.
 function SaveTextA (const FileName: String; LineWidth: Integer = 0): Boolean Exports document to ANSI text file.
 function SaveTextToStreamA (const Path: String; Stream: TStream; LineWidth: Integer; SelectionOnly, TextOnly: Boolean): Boolean Exports document or selection as ANSI text. More info.
 function SaveTextToStream (const Path: String; Stream: TStream; LineWidth: Integer; SelectionOnly, TextOnly: Boolean): Boolean Exports document or selection as UTF-16 text. More info.
 function SearchText (s: String; MatchCase: boolean = False; Down: boolean = True; WholeWord: boolean = False; MultiItem: boolean =
True; SmartStart: boolean = False): Boolean

 Search for the substring s in the document. More info.

 procedure SelectAll Selects all text in the RichEdit component.
 procedure SetFocus Gives the input focus to the component.
 procedure SelectionToHyperlink (url: string) Converts the selected text to a link with the specified URL.

Events
 Event Description
 OnClick Occurs when the user clicks the component.
 OnDoubleClick Occurs when the user double-clicks the left mouse button when the mouse pointer is over the component.
 OnEnter Occurs when a component receives the input focus.
 OnExit Occurs when the input focus shifts away from one component to another.
 OnKeyDown Occurs when a user presses any key while the form has focus.
 OnKeyPress Occurs when a key is pressed. Note that this procedure handles printable characters only.
 OnKeyUp Occurs when the user releases a key that was pressed.
 OnMouseDown Occurs when the user presses a mouse button with the mouse pointer over a component.
 OnMouseEnter Occurs when the user moves the mouse into a component.
 OnMouseLeave Occurs when the user moves the mouse outside of a component.
 OnMouseMove Occurs when the user moves the mouse pointer while the mouse pointer is over a component.
 OnMouseUp Occurs when the user releases a mouse button that was pressed with the mouse pointer over a component.

My Visual Database

127 / 222

 OnDropFiles Occurs when user tries to drag and drop a file from explorer to a form. More info.

Created with the Standard Edition of HelpNDoc: Full-featured Documentation generator

AddHotPicture

Description

Adds picture-hyperlink to the end of document.

procedure AddHotPicture (const Name: String; gr: TGraphic; ParaNo: Integer = -
1; VAlign: TRVVAlign = rvvaBaseline);

 Parameter Description
 Name Name of this hot-picture item, any string. Name must not contain CR and LF characters. RichEidt does not use Names itself, they are for your own use.

 gr Picture to insert.
 ParaNo Optional parameter. If ParaNo=-1, the method adds an item to the end of the last paragraph. If ParaNo>=0, this item starts a new paragraph.
 VAlign Optional parameter. Vertical align of this picture, relative to its line. Available values: rvvaBaseline, rvvaMiddle, rvvaAbsTop, rvvaAbsBottom, rvvaAbsMiddle, rvvaLeft, rvvaRight

Example

procedure Form1_Button1_OnClick (Sender: TObject; var Cancel: boolean);
var
 Graphic: TGraphic;
begin
 Graphic := TJpegImage.Create;
 Graphic.LoadFromFile('d:\filename.jpg');
 Form1.RichEdit1.AddHotPicture('', Graphic);
 Form1.RichEdit1.Format;
end;

Created with the Standard Edition of HelpNDoc: Free EPub and documentation generator

AddHyperlink

Description

Adds a link to the end of the document.

procedure AddHyperlink (const s: String; url: String);

 Parameter Description
 s Текст, который будет ссылкой.
 url Ссылка на web сайт либо локальный файл.

Example

https://www.helpndoc.com
https://www.helpndoc.com

My Visual Database

128 / 222

 Form1.RichEdit1.AddHyperlink('текст ссылки', 'http://google.com');
 Form1.RichEdit1.AddHyperlink('текст ссылки', 'd:\picture.jpg');
 Form1.RichEdit1.Format; // применям внесенные изменения в документ

Created with the Standard Edition of HelpNDoc: Easy EBook and documentation generator

AddNL

Description

Adds a text element to the end of the document.

procedure AddNL(const s: String; StyleNo: Integer; ParaNo: Integer = -1);

 Parameter Description
 s Text string to add. It must not contain CR, LF, TAB, FF characters (#13, #10, #9, #12). To add several lines of text use AddTextNL
 StyleNo Style number. Not used, use the value 0.
 ParaNo Optional parameter. If ParaNo=-1, the methods add an item to the end of the last paragraph. If ParaNo>=0, this item starts a new paragraph.

Example

 Form1.RichEdit1.AddNL('Hello', 0);
 Form1.RichEdit1.Format; // To apply the changes to the document

Created with the Standard Edition of HelpNDoc: Produce electronic books easily

AddPicture

Description

Adds a picture to the end of document.

procedure AddPicture (const Name: String; gr: TGraphic; ParaNo: Integer = -1;
VAlign: TRVVAlign = rvvaBaseline);

 Parameter Description
 Name Name of this picture item, any string. Name must not contain CR and LF characters. RichEdit does not use item names itself, they are for your own use.
 gr Picture to insert. By default, this picture will be owned by RichEdit component, and you must not free it.
 ParaNo Optional parameter. If ParaNo=-1, the method adds an item to the end of the last paragraph. If ParaNo>=0, this item starts a new paragraph.
 VAlign Optional parameter. Vertical align of this picture, relative to its line, available values: rvvaBaseline, rvvaMiddle, rvvaAbsTop, rvvaAbsBottom, rvvaAbsMiddle, rvvaLeft, rvvaRight

Example

procedure Form1_Button1_OnClick (Sender: TObject; var Cancel: boolean);
var
 Graphic: TGraphic;
begin
 Graphic := TJpegImage.Create;
 Graphic.LoadFromFile('d:\filename.jpg');

https://www.helpndoc.com
https://www.helpndoc.com/create-epub-ebooks

My Visual Database

129 / 222

 Form1.RichEdit1.AddPicture('', Graphic);
 Form1.RichEdit1.Format;
end;

Created with the Standard Edition of HelpNDoc: Full-featured EPub generator

AddTab

Description

Adds tabulator to the end of document.

procedure AddTab (TextStyleNo, ParaNo: Integer);

 Parameter Description
 TextStyleNo The number of the text style. Not used, use the value 0.
 ParaNo If ParaNo=-1, the method adds an item to the end of the last paragraph. If ParaNo>=0, this item starts a new paragraph.

Example

 Form1.RichEdit1.AddTab(0, -1);
 Form1.RichEdit1.Format; // To apply the changes to the document

Created with the Standard Edition of HelpNDoc: Full-featured Kindle eBooks generator

AddTextNL

Description

Adds one or more text lines to the end of document.

procedure AddTextNL (const s: String; StyleNo, FirstParaNo, OtherParaNo:
Integer; AsSingleParagraph: Boolean = False)

 Parameter Description
 s Text string to add. It may contain special characters:CR, LF, TAB, FF (#13, #10, #9, #12).
 StyleNo The number of the text style. Not used, use the value 0.
 FirstParaNo If FirstParaNo=-1, the method adds an item to the end of the last paragraph. If FirstParaNo>=0, this item starts a new paragraph.
 OtherParaNo Defines paragraph attributes for the subsequent lines of text. Must be >=0.

 AsSingleParagraph If False, each new line will be added as a new paragraph. If True, it treats #13 and #10 as line breaks, not paragraph breaks.

Example

 Form1.RichEdit1.AddTextNL('текст', 0, -1, 0);
 Form1.RichEdit1.Format; // To apply the changes to the document

https://www.helpndoc.com/create-epub-ebooks
https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

My Visual Database

130 / 222

Created with the Standard Edition of HelpNDoc: Easy EPub and documentation editor

AppendRTFFromStream

Description

Adding the contents of an RTF stream to a document.

function AppendRTFFromStream (Stream: TStream): Boolean

 Parameter Description
 Stream The stream that contains the RTF document.

Example

 procedure Form1_Button1_OnClick (Sender: TObject; var Cancel: boolean);
 var
 RtfFile: TFileStream;
 begin
 RtfFile := TFileStream.Create('d:\document.rtf', fmOpenRead);
 try
 Form1.RichEdit1.AppendRTFFromStream(RtfFile);
 finally
 RtfFile.Free;
 end;
 end;

Created with the Standard Edition of HelpNDoc: Easily create EBooks

AppendTextA

Description

Adding an ANSI encoded text file to the document.

function AppendTextA (const FileName: String; StyleNo, ParaNo: Integer;
AsSingleParagraph: Boolean): Boolean;

 Parameter Description
 FileName A text file in ANSI encoding.
 StyleNo The number of the text style. Not used, use the value 0.
 ParaNo If ParaNo=-1, the method adds an item to the end of the last paragraph. If ParaNo>=0, this item starts a new paragraph.
 AsSingleParagraph If False, each new line will be added as a new paragraph. If True, it treats #13 and #10 as line breaks, not paragraph breaks.

Example

 Form1.RichEdit1.AppendTextA('d:\file.txt', 0, -1, True);

https://www.helpndoc.com
https://www.helpndoc.com/feature-tour

My Visual Database

131 / 222

Created with the Standard Edition of HelpNDoc: Create cross-platform Qt Help files

AppendText

Description

Adding an UTF-16 encoded text file to the document.

function AppendText (const FileName: String; StyleNo, ParaNo: Integer;
DefAsSingleParagraph: Boolean): Boolean

 Parameter Description
 FileName A text file in UTF-16 encoding.
 StyleNo The number of the text style. Not used, use the value 0.
 ParaNo Optional parameter. If ParaNo=-1, the method adds an item to the end of the last paragraph. If ParaNo>=0, this item starts a new paragraph.
 DefAsSingleParagraph If False, each new line will be added as a new paragraph. If True, it treats #13 and #10 as line breaks, not paragraph breaks.

Example

 Form1.RichEdit1.AppendText('d:\file.txt', 0, -1, True);

Created with the Standard Edition of HelpNDoc: Easy CHM and documentation editor

AppendTextFromStreamA

Description

Adding ANSI encoded text stream content to the document.

function AppendTextFromStreamA (Stream: TStream; StyleNo, ParaNo: Integer;
AsSingleParagraph: Boolean): Boolean;

 Parameter Description
 Stream The stream that contains the ANSI encoded text file.
 StyleNo The number of the text style. Not used, use the value 0.
 ParaNo Optional parameter. If ParaNo=-1, the method adds an item to the end of the last paragraph. If ParaNo>=0, this item starts a new paragraph.
 AsSingleParagraph If False, each new line will be added as a new paragraph. If True, it treats #13 and #10 as line breaks, not paragraph breaks.

Example

 procedure Form1_Button1_OnClick (Sender: TObject; var Cancel: boolean);
 var
 TxtFile: TFileStream;
 begin
 TxtFile := TFileStream.Create('d:\file.txt', fmOpenRead);
 try
 Form1.RichEdit1.AppendTextFromStreamA(TxtFile, 0, -1, True);
 finally

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
https://www.helpndoc.com

My Visual Database

132 / 222

 TxtFile.Free;
 end;
 end;

Created with the Standard Edition of HelpNDoc: Easily create HTML Help documents

AppendTextFromStream

Description

Adding the contents of a UTF-16 encoded text stream to the document.

function AppendTextFromStream (Stream: TStream; StyleNo, ParaNo: Integer;
AsSingleParagraph: Boolean): Boolean;

 Parameter Description
 Stream The stream that contains the UTF-16 encoded text file.
 StyleNo The number of the text style. Not used, use the value 0.
 ParaNo Optional parameter. If ParaNo=-1, the method adds an item to the end of the last paragraph. If ParaNo>=0, this item starts a new paragraph.
 AsSingleParagraph If False, each new line will be added as a new paragraph. If True, it treats #13 and #10 as line breaks, not paragraph breaks.

Example

 procedure Form1_Button1_OnClick (Sender: TObject; var Cancel: boolean);
 var
 TxtFile: TFileStream;
 begin
 TxtFile := TFileStream.Create('d:\file.txt', fmOpenRead);
 try
 Form1.RichEdit1.AppendTextFromStream(TxtFile, 0, -1, True);
 finally
 TxtFile.Free;
 end;
 end;

Created with the Standard Edition of HelpNDoc: Free PDF documentation generator

GetSelectedImage

Description

This method returns image, if the selection consist only of one image. If there is nothing selected, or not
only image is selected, this method returns nil. The method returns image owned by RichView, not a copy
of it. So do not destroy this image.

This method must be called only when the document is formatted. To format it, call Format method.

function GetSelectedImage: TGraphic;

https://www.helpndoc.com/feature-tour
https://www.helpndoc.com

My Visual Database

133 / 222

Example

procedure Form1_Button1_OnClick (Sender: TObject; var Cancel: boolean);
var
 g: TGraphic;
begin
 g := Form1.RichEdit1.GetSelectedImage;
 if g <> nil then Form1.Image1.Picture.Assign(g);
end;

Created with the Standard Edition of HelpNDoc: Free PDF documentation generator

InsertHyperlink

Description

 Inserts a link at the cursor position.

procedure InsertHyperlink (const s: String; url: String);

 Parameter Description
 s The text that will be the link.
 url Link to a web site or local file.

Example

 Form1.RichEdit1.InsertHyperlink('link text', 'http://google.com');
 Form1.RichEdit1.InsertHyperlink('link text', 'd:\picture.jpg');

Created with the Standard Edition of HelpNDoc: Free CHM Help documentation generator

InsertPicture

Description

Inserts a picture at the cursor position.

function InsertPicture (const Name: String; gr: TGraphic; VAlign: TRVVAlign =
rvvaBaseline): Boolean;

 Parameter Description
 Name Name of this picture item, any string. Name must not contain CR and LF characters. RichEidt does not use Names itself, they are for your own use.

 gr Picture to insert.
 VAlign Optional parameter. Vertical align of this picture, relative to its line. Available values: rvvaBaseline, rvvaMiddle, rvvaAbsTop, rvvaAbsBottom, rvvaAbsMiddle, rvvaLeft, rvvaRight

Example

procedure Form1_Button1_OnClick (Sender: TObject; var Cancel: boolean);
var
 Graphic: TGraphic;

https://www.helpndoc.com
https://www.helpndoc.com

My Visual Database

134 / 222

begin
 Graphic := TJpegImage.Create;
 Graphic.LoadFromFile('d:\filename.jpg');
 Form1.RichEdit1.InsertPicture('', Graphic);
end;

Created with the Standard Edition of HelpNDoc: Easy EPub and documentation editor

InsertRTFFromStreamEd

Description

Inserts the contents of the RTF stream into the document at the cursor position.

function InsertRTFFromStreamEd (Stream: TStream): Boolean

 Parameter Description
 Stream The stream that contains the RTF document.

Example

 procedure Form1_Button1_OnClick (Sender: TObject; var Cancel: boolean);
 var
 RtfFile: TFileStream;
 begin
 RtfFile := TFileStream.Create('d:\document.rtf', fmOpenRead);
 try
 Form1.RichEdit1.InsertRTFFromStreamEd(RtfFile);
 finally
 RtfFile.Free;
 end;
 end;

Created with the Standard Edition of HelpNDoc: Write EPub books for the iPad

InsertText

Description

 Inserts text at the cursor position.

procedure InsertText (const text: String; CaretBefore: Boolean=False);

 Parameter Description
 text Text may contain special characters:CR, LF, TAB, FF (#13, #10, #9, #12).
 CaretBefore Optional parameter. If CaretBefore=True, the caret will be positioned before the inserted text after insertion (default positioning is after the text).

Example

https://www.helpndoc.com
https://www.helpndoc.com/create-epub-ebooks

My Visual Database

135 / 222

 Form1.RichEdit1.InsertText('text');
 Form1.RichEdit1.InsertText('texts', True);

Created with the Standard Edition of HelpNDoc: iPhone web sites made easy

InsertTextEx

Description

Inserts text at the cursor position with the ability to specify color, size, style and font name.

procedure InsertTextEx (const text: String; FontColor: TColor = -1; FontSize:
integer = -1; FontStyles: Integer = -1; FontName: string = '');

 Parameter Description
 text Text may contain special characters:CR, LF, TAB, FF (#13, #10, #9, #12).
 FontColor Optional parameter. Font color. More about type TColor.
 FontSize Optional parameter. Font size.
 FontStyles Optional parameter. Font style. Available values: fsBold, fsItalic, fsUnderline, fsStrikeout
 FontName Optional parameter. Font name.

Example

 Form1.RichEdit1.InsertTextEx('text', clRed, 16,
fsBold+fsItalic+fsUnderline+fsStrikeout, 'Arial');
 Form1.RichEdit1.InsertTextEx('text', clGreen, 14, fsBold+fsItalic);

Created with the Standard Edition of HelpNDoc: Free EPub producer

LoadRTFFromStream

Description

Appends the content of RTF (Rich Text Format) stream Stream to the document.

function LoadRTFFromStream (Stream: TStream): Boolean

 Parameter Description
 Stream The stream that contains the RTF document.

Example

 procedure Form1_Button1_OnClick (Sender: TObject; var Cancel: boolean);
 var
 RtfFile: TFileStream;
 begin
 RtfFile := TFileStream.Create('d:\document.rtf', fmOpenRead);
 try
 Form1.RichEdit1.LoadRTFFromStream(RtfFile);
 finally
 RtfFile.Free;

https://www.helpndoc.com/feature-tour/iphone-website-generation
https://www.helpndoc.com/create-epub-ebooks

My Visual Database

136 / 222

 end;
 end;

Created with the Standard Edition of HelpNDoc: News and information about help authoring tools and
software

LoadTextA

Description

Append the content of the text file FileName in ANSI encoding to the document.

function LoadTextA (const FileName: String; StyleNo, ParaNo: Integer;
AsSingleParagraph: Boolean): Boolean;

 Parameter Description
 FileName A text file in ANSI encoding.
 StyleNo The number of the text style. Not used, use the value 0.
 ParaNo If ParaNo=-1, the method adds an item to the end of the last paragraph. If ParaNo>=0, this item starts a new paragraph.
 AsSingleParagraph If False, each new line will be added as a new paragraph. If True, it treats #13 and #10 as line breaks, not paragraph breaks.

Example

 Form1.RichEdit1.LoadTextA('d:\file.txt', 0, -1, True);

Created with the Standard Edition of HelpNDoc: Easily create Qt Help files

LoadText

Description

Append the content of the text file FileName in UTF-16 encoding to the document.

function LoadText (const FileName: String; StyleNo, ParaNo: Integer;
DefAsSingleParagraph: Boolean): Boolean;

 Parameter Description
 FileName A text file in UTF-16 encoding.
 StyleNo The number of the text style. Not used, use the value 0.
 ParaNo If ParaNo=-1, the method adds an item to the end of the last paragraph. If ParaNo>=0, this item starts a new paragraph.
 DefAsSingleParagraph If False, each new line will be added as a new paragraph. If True, it treats #13 and #10 as line breaks, not paragraph breaks.

Example

 Form1.RichEdit1.LoadText('d:\file.txt', 0, -1, True);

Created with the Standard Edition of HelpNDoc: Easily create Help documents

https://www.helpauthoringsoftware.com
https://www.helpauthoringsoftware.com
https://www.helpndoc.com/feature-tour
https://www.helpndoc.com/feature-tour

My Visual Database

137 / 222

LoadTextFromStreamA

Description

Append ANSI encoded text stream to the document.

function LoadTextFromStreamA (Stream: TStream; StyleNo, ParaNo: Integer;
AsSingleParagraph: Boolean): Boolean;

 Parameter Description
 Stream The stream that contains the ANSI encoded text file.
 StyleNo The number of the text style. Not used, use the value 0.
 ParaNo Optional parameter. If ParaNo=-1, the method adds an item to the end of the last paragraph. If ParaNo>=0, this item starts a new paragraph.
 AsSingleParagraph If False, each new line will be added as a new paragraph. If True, it treats #13 and #10 as line breaks, not paragraph breaks.

Example

 procedure Form1_Button1_OnClick (Sender: TObject; var Cancel: boolean);
 var
 TxtFile: TFileStream;
 begin
 TxtFile := TFileStream.Create('d:\file.txt', fmOpenRead);
 try
 Form1.RichEdit1.LoadTextFromStreamA(TxtFile, 0, -1, True);
 finally
 TxtFile.Free;
 end;
 end;

Created with the Standard Edition of HelpNDoc: Easy CHM and documentation editor

LoadTextFromStream

Description

Append UTF-16 encoded text stream to the document.

function LoadTextFromStream (Stream: TStream; StyleNo, ParaNo: Integer;
DefAsSingleParagraph: Boolean): Boolean;

 Parameter Description
 Stream The stream that contains the UTF-16 encoded text file.
 StyleNo The number of the text style. Not used, use the value 0.
 ParaNo Optional parameter. If ParaNo=-1, the method adds an item to the end of the last paragraph. If ParaNo>=0, this item starts a new paragraph.
 DefAsSingleParagraph If False, each new line will be added as a new paragraph. If True, it treats #13 and #10 as line breaks, not paragraph breaks.

Example

 procedure Form1_Button1_OnClick (Sender: TObject; var Cancel: boolean);

https://www.helpndoc.com

My Visual Database

138 / 222

 var
 TxtFile: TFileStream;
 begin
 TxtFile := TFileStream.Create('d:\file.txt', fmOpenRead);
 try
 Form1.RichEdit1.LoadTextFromStream(TxtFile, 0, -1, True);
 finally
 TxtFile.Free;
 end;
 end;

Created with the Standard Edition of HelpNDoc: Create cross-platform Qt Help files

SaveDocX

Description

Exports document (or the selected part, if SelectionOnly=True) to the file FileName as DocX (Microsoft
Word format).

function SaveDocX (const FileName: String; SelectionOnly: Boolean = False):
Boolean;

 Parameter Description
 FileName The name of the output DocX file.

 SelectionOnly Optional parameter. If True, only selected part of the document is saved.

Example

 if Form1.RichEdit1.SaveDocX('d:\file.docx') then
 ShowMessage('File saved successfully')
 else
 ShowMessage('There was an error during the export.');

Created with the Standard Edition of HelpNDoc: Full-featured Kindle eBooks generator

SaveDocXToStream

Description

Exports document (or the selected part, if SelectionOnly=True) to the stream Stream as DocX (Microsoft
Word format).

function SaveDocXToStream (Stream: TStream; SelectionOnly: Boolean = False):
Boolean

 Parameter Description
 Stream The stream into which the document is saved in DocX format.
 SelectionOnly Optional parameter. If True, only selected part of the document is saved.

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

My Visual Database

139 / 222

Example

 procedure Form1_Button1_OnClick (Sender: TObject; var Cancel: boolean);
 var
 DocX: TFileStream;
 begin
 DocX := TFileStream.Create('d:\file.docx', fmCreate);
 try
 if Form1.RichEdit1.SaveDocXToStream(DocX) then
 ShowMessage('File saved successfully')
 else
 ShowMessage('There was an error during the export.');
 finally
 DocX.Free;
 end;
 end;

Created with the Standard Edition of HelpNDoc: Produce Kindle eBooks easily

SaveHTML

Description

Exports document to HTML or XHTML file, using HTML tags like , , <div>, etc and a set of
images (in separate files).

function SaveHTML (FileName, Title: String; ImagesPrefix: String = ''):
Boolean;

 Parameter Description
 FileName The name of the output HTML file.

 Title The title of the output HTML file.
 ImagesPrefix Optional parameter. The first part of names of images that will be saved with HTML document.

Example

 if Form1.RichEdit1.SaveHTML('d:\file.html', Title) then
 ShowMessage('File saved successfully')
 else
 ShowMessage('There was an error during the export.');

Created with the Standard Edition of HelpNDoc: Free Qt Help documentation generator

SaveHTMLEx

Description

Exports document to HTML or XHTML file, using CSS (Cascading Style Sheets) and a set of images (in
separate files).

function SaveHTMLEx (const FileName, Title, ImagesPrefix, ExtraStyles,
ExternalCSS: String): Boolean;

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle
https://www.helpndoc.com

My Visual Database

140 / 222

 Parameter Description
 FileName The name of the output HTML file.

 Title The title of the output HTML file.
 ImagesPrefix Optional parameter. The first part of names of images that will be saved with HTML document.
 ExtraStyles Strings that can contain additional entries of CSS (usually you need not to use it, set to '').
 ExternalCSS If this string is not empty, this method uses external CSS instead of saving CSS into HTML file).

Example

 if Form1.RichEdit1.SaveHTMLEx('d:\file.html', 'Title', '', '', '') then
 ShowMessage('File saved successfully')
 else
 ShowMessage('There was an error during the export.');

Created with the Standard Edition of HelpNDoc: Write EPub books for the iPad

SaveRTF

Description

Exports document (or the selected part, if SelectionOnly=True) to the file FileName as RTF (Rich Text
Format).

function SaveRTF (const FileName: String; SelectionOnly: Boolean = False):
Boolean;

 Parameter Description
 FileName The name of the output RTF file.

 SelectionOnly Optional parameter. If True, only selected part of the document is saved.

Example

 if Form1.RichEdit1.SaveRTF('d:\file.rtf') then
 ShowMessage('File saved successfully')
 else
 ShowMessage('There was an error during the export.');

Created with the Standard Edition of HelpNDoc: Full-featured EBook editor

SaveRTFToStream

Description

Exports document (or the selected part, if SelectionOnly=True) to the Stream as RTF (Rich Text Format).

function SaveRTFToStream (Stream: TStream; SelectionOnly: Boolean = False):
Boolean

https://www.helpndoc.com/create-epub-ebooks
https://www.helpndoc.com/create-epub-ebooks

My Visual Database

141 / 222

 Parameter Description
 Stream The stream into which the document is saved in RTF format.
 SelectionOnly Optional parameter. If True, only selected part of the document is saved.

Example

 procedure Form1_Button1_OnClick (Sender: TObject; var Cancel: boolean);
 var
 RTF: TFileStream;
 begin
 RTF := TFileStream.Create('d:\file.rtf', fmCreate);
 try
 if Form1.RichEdit1.SaveRTFToStream(RTF) then
 ShowMessage('File saved successfully')
 else
 ShowMessage('There was an error during the export.');
 finally
 RTF.Free;
 end;
 end;

Created with the Standard Edition of HelpNDoc: Single source CHM, PDF, DOC and HTML Help creation

SaveTextToStreamA

Description

Exports document or selection as ANSI text.

function SaveTextToStreamA (const Path: String; Stream: TStream; LineWidth:
Integer; SelectionOnly, TextOnly: Boolean): Boolean

 Parameter Description
 Path Path for saving images and other non-text items. See TextOnly parameter.
 Stream The stream into which the document is saved in text format.
 LineWidth LineWidth is used for saving breaks (they are saved as LineWidth '-' characters)
 SelectionOnly If True, only selected part of the document is saved.
 TextOnly If True, non-text items are ignored when saving. If False, text representation of items is saved.

Example

 procedure Form1_Button1_OnClick (Sender: TObject; var Cancel: boolean);
 var
 Txt: TFileStream;
 begin
 Txt := TFileStream.Create('d:\file.txt', fmCreate);
 try
 if Form1.RichEdit1.SaveTextToStreamA('', Txt, 1, False, True) then
 ShowMessage('File saved successfully')
 else
 ShowMessage('There was an error during the export.');
 finally

https://www.helpndoc.com/help-authoring-tool

My Visual Database

142 / 222

 Txt.Free;
 end;
 end;

Created with the Standard Edition of HelpNDoc: Easily create EPub books

SaveTextToStream

Description

Exports document or selection as UTF-16 text.

function SaveTextToStream (const Path: String; Stream: TStream; LineWidth:
Integer; SelectionOnly, TextOnly: Boolean): Boolean

 Parameter Description
 Path Path for saving images and other non-text items. See TextOnly parameter.
 Stream The stream into which the document is saved in text format.
 LineWidth LineWidth is used for saving breaks (they are saved as LineWidth '-' characters)
 SelectionOnly If True, only selected part of the document is saved.
 TextOnly If True, non-text items are ignored when saving. If False, text representation of items is saved.

Example

 procedure Form1_Button1_OnClick (Sender: TObject; var Cancel: boolean);
 var
 Txt: TFileStream;
 begin
 Txt := TFileStream.Create('d:\file.txt', fmCreate);
 try
 if Form1.RichEdit1.SaveTextToStream('', Txt, 1, False, True) then
 ShowMessage('File saved successfully')
 else
 ShowMessage('There was an error during the export.');
 finally
 Txt.Free;
 end;
 end;

Created with the Standard Edition of HelpNDoc: Easy EBook and documentation generator

SearchText

Description

Search for the substring s in the document.

function SearchText (s: String; MatchCase: boolean = False; Down: boolean =
True; WholeWord: boolean = False; MultiItem: boolean = True; SmartStart:
boolean = False): Boolean

 Parameter Description

https://www.helpndoc.com/feature-tour
https://www.helpndoc.com

My Visual Database

143 / 222

 s Search string.
 MatchCase Optional parameter. If True, a character case is taken into account when comparing strings.

 Down Optional parameter. If True, the search is performed to the end of the document. If False, it is performed to the top of the document.

 WholeWord Optional parameter. If True, the searched string matches only whole words.

 MultiItem Optional parameter. If True, the search can match substrings of several text items. If not included, the text is searched in each text item separately. For example,
if the document contains the text Hello, the substring 'Hello' can be found only if this option is included, because 'He' and 'llo' belong to different items.

 SmartStart Not used.

Example

 if Form1.RichEdit1.SearchText('string') then
 ShowMessage('Found')
 else
 ShowMessage('Not found');

 if Form1.RichEdit1.SearchText('string', True) then // case-sensitive search
 ShowMessage('Found')
 else
 ShowMessage('Not found');

Created with the Standard Edition of HelpNDoc: Full-featured EBook editor

CheckBox

Description

CheckBox represents a check box that can be on (checked) or off (unchecked). The user can check the box
to select the option, or uncheck it to deselect the option. If necessary, the component can have three
states, such as On, Off and Grayed, to do this, set the AllowGrayed component property to True.

Class: TdbCheckBox

Properties
 Property Type Description

 sqlValue String
 Returns the component value, for use in SQL queries. In case of empty value, it returns NULL string

 example: SQLExecute ('INSERT INTO tablename (fieldname) VALUES ('+Form1.CheckBox1.sqlValue+')');
 Alignment TAlignment Controls the position of the check box's caption. Available values: taRightJustify, taLeftJustify

 AllowGrayed Boolean Determines whether a check box can be in a dimmed state. If AllowGrayed is set to True, the check box has three possible states: selected, cleared, and dimmed. If
AllowGrayed is set to False, the check box has only two possible states: selected and cleared. See the State property to read the value of cbGrayed (dimmed).

 CanFocus Boolean

 It checks if the component can get input focus, which is usually necessary before using the SetFocus method. If a component has Visible = False or Enabled =
False property, or if the component is located on a parent component with those properties, using the SetFocus method will cause an error.

example: if Form1.CheckBox1.CanFocus then Form1.CheckBox1.SetFocus;
 Caption String Specifies a text string that identifies the control to the user.
 Checked Boolean Specifies whether the button control is checked. If the AllowGrayed property is set to True, use the State property to read the value of cbGrayed.

https://www.helpndoc.com/create-epub-ebooks

My Visual Database

144 / 222

 Cursor TCursor Specifies the image used to represent the mouse pointer when it passes into the region covered by the control. More info.
 dbTable String Determines which database table a component belongs to.
 dbField String Determines which field of the database table this component belongs to.

 dbIncremSearch String Allows you to specify the name of the button on the current form with the "Search" or "SQL query" action, which will be automatically pressed when user changes
the value of the component. The property is necessary to implement instant search.

 Enabled Boolean Controls whether the component responds to mouse, keyboard, and timer events.
 Focused Boolean Determines whether the control has input focus.
 Font TFont Allows you to set font name, size, color and style. More info.
 Hint String Hint contains the text string that appears when the user moves the mouse over the component., see also ShowHint
 Name String The name of the component.
 ShowHint Boolean Specifies whether to show the Help Hint when the mouse pointer moves over the component, see also Hint
 State TCheckBoxState Indicates whether the check box is selected, cleared, or dimmed. Available values: cbChecked, cbUnchecked, cbGrayed
 TabOrder Integer Indicates the position of the component in its parent's tab order. TabOrder is the order in which child components are visited when the user presses the Tab key.
 TabStop Boolean Determines whether the user can tab to a control. Use the TabStop to allow or disallow access to the control using the Tab key.
 Tag Integer Allows you to assign a number to a component for your own needs.
 TagString String Allows you to assign a string to a component for your own needs.
 WordWrap Boolean Specifies whether the button text wraps to fit the width of the control.
 Visible Boolean Specifies whether the component appears onscreen.
 Left Integer Specifies the horizontal coordinate of the left edge of a component relative to its parent.
 Top Integer Specifies the vertical coordinate of the upper-left of a component relative to its parent.
 Width Integer Specifies the horizontal size of the component in pixels.
 Height Integer Specifies the vertical size of the component in pixels.

Methods
 Method Description
 procedure SetFocus Gives the input focus to the component.

Events
 Event Description
 OnClick Occurs when the user clicks the component.
 OnEnter Occurs when a component receives the input focus.
 OnExit Occurs when the input focus shifts away from one component to another.
 OnKeyDown Occurs when a user presses any key while the form has focus.
 OnKeyPress Occurs when a key is pressed. Note that this procedure handles printable characters only.
 OnKeyUp Occurs when the user releases a key that was pressed.
 OnMouseDown Occurs when the user presses a mouse button with the mouse pointer over a component.
 OnMouseEnter Occurs when the user moves the mouse into a component.
 OnMouseLeave Occurs when the user moves the mouse outside of a component.
 OnMouseMove Occurs when the user moves the mouse pointer while the mouse pointer is over a component.
 OnMouseUp Occurs when the user releases a mouse button that was pressed with the mouse pointer over a component.

Created with the Standard Edition of HelpNDoc: Easily create iPhone documentation

https://www.helpndoc.com/feature-tour/iphone-website-generation

My Visual Database

145 / 222

DateTimePicker

Description

DateTimePicker is designed specifically for entering dates or/and times.

Class: TdbDateTimePicker

Properties
 Property Type Description

 sqlDateTime String

 Returns the date and time value of the component for use in SQL queries. The property value already contains escape quotes. In the case of an empty value, it will
return NULL.

 example: SQLExecute ('INSERT INTO tablename (fieldname) VALUES ('+Form1.DateTimePicker1.sqlDateTime+')');

 sqlDate String

 Returns the date value of the component for use in SQL queries. The property value already contains escape quotes. In the case of an empty value, it will return
NULL.

 пример: SQLExecute ('INSERT INTO tablename (fieldname) VALUES ('+Form1.DateTimePicker1.sqlDate+')');

 sqlTime String

 Returns the time value of the component for use in SQL queries. The property value already contains escape quotes. In the case of an empty value, it will return
NULL.

 пример: SQLExecute ('INSERT INTO tablename (fieldname) VALUES ('+Form1.DateTimePicker1.sqlTime+')');

 CanFocus Boolean

 It checks if the component can get input focus, which is usually necessary before using the SetFocus method. If a component has Visible = False or Enabled = False
property, or if the component is located on a parent component with those properties, using the SetFocus method will cause an error.

example: if Form1.DateTimePicker.CanFocus then Form1.DateTimePicker1.SetFocus;
 Checked Boolean Indicates whether the check box next to the date or time is selected. Seel also ShowCheckbox.
 Cursor TCursor Specifies the image used to represent the mouse pointer when it passes into the region covered by the control. More info.
 DateTime TDateTime Indicates the date that is marked on the calendar. More info about TDateTime type
 dbFilter String Makes sense when the component is used together with the button with the "Search" action. Available values: '=', '>=', '<=', '>', '<'
 dbTable String Determines which database table a component belongs to.
 dbField String Determines which field of the database table this component belongs to.

 dbIncremSearch String Allows you to specify the name of the button on the current form with the "Search" or "SQL query" action, which will be automatically pressed when user changes the
value of the component. The property is necessary to implement instant search.

 Enabled Boolean Controls whether the component responds to mouse, keyboard, and timer events.
 Focused Boolean Determines whether the control has input focus.
 Font TFont Allows you to set font name, size, color and style. More info.
 Format String Specify format for date-time string. More info.
 TimeFormat String Makes sense when Kind property = DateTime. Allows you to set the format of the time, the format of the date is set in the Format property.
 Hint String Hint contains the text string that appears when the user moves the mouse over the component., see also ShowHint
 Kind TAdvDateTimeKind Determines whether the component is a date selector, a time selector or a date and time selector. Available values: dkDate, dkTime, dkDateTime
 MaxDate TDateTime Indicates the maximum date to which users can scroll the calendar. More info about TDateTime type
 MinDate TDateTime Indicates the minimum date that can be selected. More info about TDateTime type
 Name String The name of the component.
 ShowCheckbox Boolean Displays a check box next to the date or time.
 ShowHint Boolean Specifies whether to show the Help Hint when the mouse pointer moves over the component, see also Hint
 TabOrder Integer Indicates the position of the component in its parent's tab order. TabOrder is the order in which child components are visited when the user presses the Tab key.

My Visual Database

146 / 222

 TabStop Boolean Determines whether the user can tab to a control. Use the TabStop to allow or disallow access to the control using the Tab key.
 Tag Integer Allows you to assign a number to a component for your own needs.
 TagString String Allows you to assign a string to a component for your own needs.
 Visible Boolean Specifies whether the component appears onscreen.
 Left Integer Specifies the horizontal coordinate of the left edge of a component relative to its parent.
 Top Integer Specifies the vertical coordinate of the upper-left of a component relative to its parent.
 Width Integer Specifies the horizontal size of the component in pixels.
 Height Integer Specifies the vertical size of the component in pixels.

Methods
 Method Description
 procedure OpenCalendar Opens the drop-down calendar.
 procedure SetFocus Gives the input focus to the component.

Events
 Event Description
 OnChange Occurs when a date or time is entered.
 OnClick Occurs when the user clicks the component.
 OnCloseUp Occurs when the drop-down calendar closes.
 OnDropDown Occurs when the user opens the drop-down calendar by clicking the arrow at the right of the control.
 OnEnter Occurs when a component receives the input focus.
 OnExit Occurs when the input focus shifts away from one component to another.
 OnKeyDown Occurs when a user presses any key while the form has focus.
 OnKeyPress Occurs when a key is pressed. Note that this procedure handles printable characters only.
 OnKeyUp Occurs when the user releases a key that was pressed.
 OnMouseEnter Occurs when the user moves the mouse into a component.
 OnMouseLeave Occurs when the user moves the mouse outside of a component.

Created with the Standard Edition of HelpNDoc: Create help files for the Qt Help Framework

Calendar

Description

Calendar is a component that displays the month calendar of the specified year.

Class: TdbComboBox

Properties
 Property Type Description

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework

My Visual Database

147 / 222

 sqlDate String
Returns the date value of a component for use in SQL queries. The property value already contains escape quotes. In the case of an empty value, it will return NULL

 example: SQLExecute ('INSERT INTO tablename (fieldname) VALUES ('+Form1.Calendar.sqlDate+')');

 CanFocus Boolean

 It checks if the component can get input focus, which is usually necessary before using the SetFocus method. If a component has Visible = False or Enabled = False
property, or if the component is located on a parent component with those properties, using the SetFocus method will cause an error.

example: if Form1.Calendar1.CanFocus then Form1.Calendar1.SetFocus;
 Cursor TCursor Specifies the image used to represent the mouse pointer when it passes into the region covered by the control. More info.
 Date TDateTime Indicates the date that is marked on the calendar. More info about TDateTime type
 dbFilter String Makes sense when the component is used together with the button with the "Search" action. Available values: '=', '>=', '<=', '>', '<'
 dbTable String Determines which database table a component belongs to.
 dbField String Determines which field of the database table this component belongs to.

 dbIncremSearch String Allows you to specify the name of the button on the current form with the "Search" or "SQL query" action, which will be automatically pressed when user changes the
value of the component. The property is necessary to implement instant search.

 Enabled Boolean Controls whether the component responds to mouse, keyboard, and timer events.
 EndDate TDateTime It makes sense when the MultiSelect property = True. Indicates the last date that in the range of selected dates. The first selected date is given by the Date property.
 Focused Boolean Determines whether the control has input focus.
 Hint String Hint contains the text string that appears when the user moves the mouse over the component., see also ShowHint
 MaxDate TDateTime Indicates the maximum date to which users can scroll the calendar. More info about TDateTime type
 MinDate TDateTime Indicates the minimum date that can be selected. More info about TDateTime type
 Name String The name of the component.
 ShowHint Boolean Specifies whether to show the Help Hint when the mouse pointer moves over the component, see also Hint
 ShowToday Boolean Specifies whether today's date is shown below the calendar.
 ShowTodayCircle Specifies whether today's date is circled on the calendar.
 TabOrder Integer Indicates the position of the component in its parent's tab order. TabOrder is the order in which child components are visited when the user presses the Tab key.
 TabStop Boolean Determines whether the user can tab to a control. Use the TabStop to allow or disallow access to the control using the Tab key.
 Tag Integer Allows you to assign a number to a component for your own needs.
 TagString String Allows you to assign a string to a component for your own needs.
 Visible Boolean Specifies whether the component appears onscreen.
 WeekNumbers Boolean Specifies whether week numbers are shown to the left of the calendar.
 Left Integer Specifies the horizontal coordinate of the left edge of a component relative to its parent.
 Top Integer Specifies the vertical coordinate of the upper-left of a component relative to its parent.
 Width Integer Specifies the horizontal size of the component in pixels.
 Height Integer Specifies the vertical size of the component in pixels.

Methods
 Method Description
 procedure SetFocus Gives the input focus to the component.

Events
 Event Description
 OnClick Occurs when the user clicks the component.
 OnDoubleClick Occurs when the user double-clicks the left mouse button when the mouse pointer is over the component.
 OnEnter Occurs when a component receives the input focus.
 OnExit Occurs when the input focus shifts away from one component to another.

My Visual Database

148 / 222

 OnGetMonthBoldInfo The event allows you to highlight certain days in the calendar. More info.
 OnKeyDown Occurs when a user presses any key while the form has focus.
 OnKeyPress Occurs when a key is pressed. Note that this procedure handles printable characters only.
 OnKeyUp Occurs when the user releases a key that was pressed.
 OnMouseEnter Occurs when the user moves the mouse into a component.
 OnMouseLeave Occurs when the user moves the mouse outside of a component.

Created with the Standard Edition of HelpNDoc: Easily create Help documents

OnGetMonthBoldInfo

Description

The event allows you to highlight certain days in the calendar.

procedure OnGetMonthBoldInfo (Sender: TObject; Month, Year: Cardinal; var
MonthBoldInfo: Cardinal);

Examples

// highlight days in the calendar, if January 2020 is shown
procedure Form1_MonthCalendar1_OnGetMonthBoldInfo (Sender: TObject; Month,
Year: Cardinal; var MonthBoldInfo: Cardinal);
begin
 if (Month=1) and (Year=2020) then
 TdbMonthCalendar(Sender).BoldDays([1,3,4,6,8,10], MonthBoldInfo);
end;

// Highlighting days in the calendar that are present in the database table
procedure Form1_MonthCalendar1_OnGetMonthBoldInfo (Sender: TObject; Month,
Year: Cardinal; var MonthBoldInfo: Cardinal);
var
 AStr: array of string;
 AByte: Array of byte;
 sMonth, s: string;
 i, c: integer;
begin
 // getting the days from database to be highlighted in the calendar
 sMonth := IntToStr(Month);
 if Length(sMonth)=1 then sMonth := '0' + sMonth;
 s := SQLExecute('SELECT group_concat(strftime(''%d'', "DateField"), ",")
FROM booking WHERE strftime(''%m.%Y'', "DateField"
="'+sMonth+'.'+IntToStr(Year)+'"');

 if s <> '' then
 begin
 AStr := SplitString(s, ','); // Convert the string with days into an
array AStr
 SetLength(AByte, Length(AStr)); // set the length of the array AByte

https://www.helpndoc.com/feature-tour

My Visual Database

149 / 222

 // convert an array of strings into a numeric array
 c := Length(AByte)-1;
 for i := 0 to c do
 if ValidInt(AStr[i]) then AByte[i] := StrToInt(AStr[i]) else
AByte[i] := 0;

 TdbMonthCalendar(Sender).BoldDays(AByte, MonthBoldInfo); // pass an
array of days to the component that you want to select
 end;
end;

Created with the Standard Edition of HelpNDoc: Produce Kindle eBooks easily

ComboBox

Description

The component is used to show/select the record.

Class: TdbComboBox

Properties
 Property Type Description

 sqlValue String
 Returns the id of the selected record in the component, for use in SQL queries. In case of empty value, it returns NULL string

 example: SQLExecute ('INSERT INTO tablename (fieldname) VALUES ('+Form1.ComboBox1.sqlValue+')');
 dbItemID Integer The identifier of the selected record in the component. The identifier corresponds to the id field in the database. If no entry is selected, returns -1
 dbSortField String The database field by which the records in the component will be sorted.
 dbSortAsc Boolean If True, the records will be sorted in ascending order, otherwise in descending order.
 dbFilter String Allows you to set an additional filter that will be used to fill the component with data from the database. For example: tablename.fieldname = 1
 dbForeignKey String Specifies which external key of the database table this component belongs to.
 dbField String Determines which field of the database table this component belongs to.

 dbIncremSearch String Allows you to specify the name of the button on the current form with the "Search" or "SQL query" action, which will be automatically pressed when user changes the
value of the component. The property is necessary to implement instant search.

 dbSQL String Contains the SQL query that was used when the SQLExecute method was called.

 CanFocus Boolean

 It checks if the component can get input focus, which is usually necessary before using the SetFocus method. If a component has Visible = False or Enabled = False
property, or if the component is located on a parent component with those properties, using the SetFocus method will cause an error.

example: if Form1.ComboBox1.CanFocus then Form1.ComboBox1.SetFocus;
 Color TColor Specifies the background color of the control. More info.
 Cursor TCursor Specifies the image used to represent the mouse pointer when it passes into the region covered by the control. More info.
 DroppedDown Boolean Indicates whether the drop-down list is currently displayed.
 Enabled Boolean Controls whether the component responds to mouse, keyboard, and timer events.
 Focused Boolean Determines whether the control has input focus.
 Font TFont Allows you to set font name, size, color and style. More info.
 GetCount Integer Allows you to get the number of records in a component.
 HideTextIfNotExists Boolean Makes sense if the Searchable property = True. Set HideTextIfNotExists = False, so that the entered text will not disappear if it is not found among records.
 Hint String Hint contains the text string that appears when the user moves the mouse over the component., see also ShowHint
 ItemIndex Integer Specifies the index of the selected item. The first item in the list has index 0, the second item has index 1, and so on. If no item is selected, the value of ItemIndex is -1.

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

My Visual Database

150 / 222

 Items TStringList Provides access to the list of items (strings) in the list portion of the combo box. More info.
 Items[i] String Line-by-line access to the list of records. Example: ShowMessage(Form1.ComboBox1.Items[1]); // will show a message with the second line (numbering from zero
 ItemsChecked[i] Boolean Makes sense if the MultiSelect = True property allows you to read or check the checkbox next to the record.
 MultiSelect Boolean Enables multiple selection of records in the component. Applies when using the button with the "Search" action or a script.
 Name String The name of the component.
 ShowHint Boolean Specifies whether to show the Help Hint when the mouse pointer moves over the component, see also Hint
 SearchableType TSearchType' It makes sense if the Searchable property = True. Search Type. Values: stExact - search for full match, stContain - search for substring in string.
 SelectedCount Integer Makes sense if the MultiSelect property = True. Returns the number of selected records in the component.
 SelLength Integer Specifies the length, in characters, of the selected text in the edit portion of the combo box.
 SelStart Integer Specifies the position of the first selected character in the edit portion of the combo box.

 Sorted Boolean Determines whether the records in the component will be sorted. By default, sorting is performed on the database field specified in the dbField property, you can
change the field to be used for sorting using the dbSortField property. You can define the type of sorting in the dbSortAsc property.

 TabOrder Integer Indicates the position of the component in its parent's tab order. TabOrder is the order in which child components are visited when the user presses the Tab key.
 TabStop Boolean Determines whether the user can tab to a control. Use the TabStop to allow or disallow access to the control using the Tab key.
 Tag Integer Allows you to assign a number to a component for your own needs.
 TagString String Allows you to assign a string to a component for your own needs.
 Text String Contains a text string associated with the component.
 TextHint String Specifies the text that is displayed as a text watermark in the edit box of the combo box control.
 Visible Boolean Specifies whether the component appears onscreen.
 Left Integer Specifies the horizontal coordinate of the left edge of a component relative to its parent.
 Top Integer Specifies the vertical coordinate of the upper-left of a component relative to its parent.
 Width Integer Specifies the horizontal size of the component in pixels.
 Height Integer Specifies the vertical size of the component in pixels.

Methods
 Method Description
 procedure dbAddRecord (id: integer; text: string) Adds a record to the component and assigns it the specified id. The record will not be added to the database.
 procedure dbEditRecord (id: integer; text: string) Edits the record in the component with the specified id. The database record will not be edited.
 procedure dbDeleteRecord (id: integer) Deletes the record from the component with the specified id. The record will not be deleted from the database.

 function dbGetFieldValue (FieldName: string): variant The function allows you to get the value of the specified field from the database for the selected record in the component. If no record is selected
in the component, the function returns Unassigned.

 function dbIndexToID (index: integer): integer The function allows you to get the id of a record by specifying its sequence number in the list.

 procedure dbSQLExecute (sql: string) The procedure allows you to fill a component with data from the database using an SQL query. The specified SQL query will be saved in the dbSQL
property.

 procedure dbUpdate Forces the data in the component to be updated. Usually the component updates the data automatically if the data has been changed.
 procedure Clear Clears the contents of the component.
 procedure DoOnChange Forcibly executes the OnChange event if it was defined for a component.
 procedure SetAllCheckBoxes (const Checked: boolean) It makes sense if the MultiSelect property = True. Changes the state of the checkbox for each record.
 procedure SetFocus Gives the input focus to the component.

Events
 Event Description
 OnChange Occurs when the user changes the text displayed in the edit region.
 OnClick Occurs when the user clicks the component.
 OnCloseUp Occurs when the drop-down list closes up due to some user action.

My Visual Database

151 / 222

 OnDoubleClick Occurs when the user double-clicks the left mouse button when the mouse pointer is over the component.
 OnDropDown Occurs when the drop-down list closes up due to some user action.
 OnEnter Occurs when a component receives the input focus.
 OnExit Occurs when the input focus shifts away from one component to another.
 OnKeyDown Occurs when a user presses any key while the form has focus.
 OnKeyPress Occurs when a key is pressed. Note that this procedure handles printable characters only.
 OnKeyUp Occurs when the user releases a key that was pressed.
 OnMouseEnter Occurs when the user moves the mouse into a component.
 OnMouseLeave Occurs when the user moves the mouse outside of a component.
 OnDropFiles Occurs when user tries to drag and drop a file from explorer to a form. More info.

Created with the Standard Edition of HelpNDoc: Free Qt Help documentation generator

TableGrid

Description

The component is used to output records from the database in tabular form.

Class: TdbStringGridEx

Properties
 Property Type Description

 dbCustomOrderBy String Allows you to specify sorting. For example, you can specify sorting by two database fields at the same time, example: tablename.fieldname1, tablename.fieldname2
или tablename.fieldname1 ASC, tablename.fieldname2 DESC

 dbFilter String Allows you to set an additional filter that will be used to populate the component with data from the database. For example: tablename.fieldname = 1

 dbGeneralTable String Contains the name of the main database table; it is from this table that you get the identifier (database field id) of the selected record using the dbItemID or
sqlValue property. The property can also contain an external key, for example, when a component is used for a search.

 dbGetSqlStatement String The property allows you to get the last SQL query that was used to populate the component with data from the database.

 dbIncremSearch String Allows you to specify the name of the button on the current form with the "Search" or "SQL query" action, which will be automatically pressed when user changes
the value of the component. The property is necessary to implement instant search.

 dbItemID Integer The identifier of the selected record in the component. The identifier corresponds to the id field in the database.
 dbLimit Integer Allows you to set the maximum number of records that will be populated into a component. More info.
 dbListFieldsNames String Contains header names for columns separated by commas.
 dbOffSet Integer Allows you to set an offset when retrieving records from the database. More info.
 dbParentTable String Contains the name of the parent database table when the component displays child records (option: Show Child Records).
 dbParentTableId Integer Contains the identifier (id field) of the parent record in the parent table (dbParentTable) when the component displays child records (option: Show child records).
 dbPopupMenu TPopupMenu Provides access to the component's popup menu. More info.

 dbSortAsc Boolean If True, the records will be sorted in ascending order, otherwise in descending order. The property value will be ignored if a different sorting is specified in the
dbCustomOrderBy property.

 dbSortField String The database field by which the records in the component will be sorted. The property value will be ignored if a different sorting is specified in the
dbCustomOrderBy property.

 dbSQL String Contains an SQL query if the component was populated with data using the button with the "SQL query" action. Also allows you to set your own SQL query which
will be executed when calling the dbSQLExecute method. More info.

 sqlValue String
 Returns the id of the selected record in the component for use in SQL queries. In case of empty value, it returns NULL string

 пример: SQLExecute ('INSERT INTO tablename (fieldname) VALUES ('+Form1.TableGrid1.sqlValue+')');
 AllowCreate Boolean It is responsible for the ability to create new records directly in the component.

https://www.helpndoc.com

My Visual Database

152 / 222

 AllowCreateEmpty Boolean It is responsible for the ability to create new empty records.
 AllowEdit Boolean It is responsible for the ability to edit records directly in the component.
 AllowDelete Boolean It is responsible for the ability to delete records directly in the component.
 SecondClickEdit Boolean Determines whether or not you need to double-click a cell to edit a record.
 BorderStyle TBorderStyle Determines whether the component has a border. Available values: bsSingle, bsNone

 CanFocus Boolean

 It checks if the component can get input focus, which is usually necessary before using the SetFocus method. If a component has Visible = False or Enabled = False
property, or if the component is located on a parent component with those properties, using the SetFocus method will cause an error.

example: if Form1.TableGrid1.CanFocus then Form1.TableGrid1.SetFocus;
 Canvas TCanvas A class that allows you to draw on a component. More info.
 Cell[x,y] TCell Property to access additional properties of the specified component cell (x - column, y - row). More info.
 Cells[x,y] String Property for accessing the text content of a cell (x - column, y - row).
 ClientWidth Integer The width of the client part of the component (i.e. excluding borders).
 ClientHeight Integer The height of the client part of the component (i.e., excluding the borders).
 Color TColor The background color of the component. More info.
 Columns TNxColumns Property to access additional column properties and methods. More info.
 Columns[i] TNxCustomColumn Property to access the properties of a specified column. More info.
 Cursor TCursor Specifies the image used to represent the mouse pointer when it passes into the region covered by the control. More info.
 Enabled Boolean Controls whether the component responds to mouse, keyboard, and timer events.
 FixedCols Integer Sets the number of fixed columns that will not move when scrolling horizontally.
 Focused Boolean Determines whether the control has input focus.
 Font TFont Allows you to set font name, size, color and style. More info.
 HeaderSize Integer Gets or sets size of columns headers.
 Hint String Hint contains the text string that appears when the user moves the mouse over the component., see also ShowHint
 HorzScrollBar TNxScrollBar Property to access additional scrollbar properties and methods. More info.
 LastAddedRow Integer Returns the index of the last added line. Read-only.
 Name String The name of the component.
 Options TGridOptions Additional component settings. More info.
 Parent TWinControl The parent component on which this component is placed.
 RowCount Integer Gets total number of rows.
 RowSize Integer Gets or sets default size (height) of rows in grid.
 Row[i] TRow Access to additional properties of a row by its index. More info.
 RowVisible[i] Boolean Determines the visibility of the row by its index.
 Selected[i] Boolean Gets or sets specified row's selected state.
 SelectedRow Integer Gets or sets selected Row's Index.
 SelectedColumn Integer Gets or sets Index of selected Column.
 SelectedCount Integer Gets number of selected rows.
 ShowHint Boolean Specifies whether to show the Help Hint when the mouse pointer moves over the component, see also Hint
 SlideSize Integer Gets or sets size (height) of single slide. Имеет смысл, когда свойство компонента GridStyles = gsSlides. Подробней про режим gsSlides.
 SortedColumn TNxCustomColumn Reference to the sorted column.
 TabOrder Integer Indicates the position of the component in its parent's tab order. TabOrder is the order in which child components are visited when the user presses the Tab key.
 TabStop Boolean Determines whether the user can tab to a control. Use the TabStop to allow or disallow access to the control using the Tab key.
 Tag Integer Allows you to assign a number to a component for your own needs.
 TagString String Allows you to assign a string to a component for your own needs.
 VertScrollBar TNxScrollBar Property to access additional scrollbar properties and methods. More info.
 Visible Boolean Specifies whether the component appears onscreen.
 VisibleRows Integer Gets number of visible rows.
 Left Integer Specifies the horizontal coordinate of the left edge of a component relative to its parent.
 Top Integer Specifies the vertical coordinate of the upper-left of a component relative to its parent.
 Width Integer Specifies the horizontal size of the component in pixels.

My Visual Database

153 / 222

 Height Integer Specifies the vertical size of the component in pixels.

Methods
 Method Description
 function dbIndexToID (index: Integer): integer Allows you to get the record ID (database field id) by specifying the row number.

 function dbUpdate: String Forcibly updates data in the component. As a rule, the component updates data automatically if the data has been changed. It also returns the SQL query that was
used to access the database.

 function AddRow (Count: Integer = 1): Integer Adds the specified number of rows to the component. Returns the index of the last added row. The data is not added to the database.
 procedure BeginUpdate Called before performing a large number of operations on a component to increase performance. The EndUpdate method must be called at the end.
 procedure BestFitColumns (BestFitMode: TBestFitMode = bfCells) The method automatically adjusts the width of the columns. More info.
 procedure BestFitRow (const Index: Integer) The method automatically adjusts the height of the row, depending on the contents of the cells in the given row. More info.
 procedure CalculateFooter (VisibleOnly: Boolean = False) Calculates footer of the component.
 procedure ClearRows Clears rows of of the component.
 procedure DeleteRow (Index: Integer) Deletes specified row. The record from the database will not be deleted.
 function ExportToExcel (FileName: string = ''; ExcelVisible: boolean = True;
FirsRowColumns: boolean = True): Variant

 Exports data from the component to Excel. Also returns an OLE Excel object, to work with the data later.

 function ExportToLibreCalc (FirsRowColumns: boolean = True): Boolean Exports data from the component to OpenOffice (LibreOffice).
 procedure EndUpdate See BeginUpdate
 function GetRowAtPos (X, Y: Integer): Integer Allows you to get the row index by coordinates.
 function GetColumnAtPos (X, Y: Integer): TNxCustomColumn Allows you to get a link to a column by coordinates.
 procedure InsertRow (Pos: Integer; Count: Integer = 1) Inserts single row at specified position. This will not add an record to the database.
 procedure MoveRow (FromPos, ToPos: Integer) Moves row from specified position to another one. In this case, no changes are made to the database.
 procedure SaveToTextFile (const FileName: String; Separator: Char = ',';
MultiLineSeparator: Char = '|')

 Saves the contents of the component to a text file. The file encoding used is Unicode (UCS-2 Little Endian).

 procedure SaveToHtml (FileName: String; SaveHeaders: boolean = True;
AllRows: boolean = False; CreateStyleSheet: boolean = True; SaveFooter:
boolean = False; SaveCaption: boolean = False)

 Saves the content of the component in an HTML file.

 procedure LoadFromTextFile (const FileName: String; Separator: Char = ',';
MultiLineSeparator: Char = '|'; StartRow: Integer = 0)

 Loads text file data into the component. The data will not get into the database. The encoding of the loaded file must be Unicode (UCS-2 Little Endian)

 procedure ScrollToRow (index: integer) Moves the scroll in the component so that the specified line is visible.
 procedure SelectAll Selects all rows in the component. For the method to work, the Options property must have values goMultiSelect and goSelectFullRow.
 procedure SelectRange (FromRow, ToRow: Integer; Value: Boolean) Selects (or deselects, if Value = False) the specified range of rows.
 procedure SetFocus Gives the input focus to the component.
 procedure SwapRows (FromPos, ToPos: Integer) Swaps positions of two rows.

Events
 Event Description
 OnApplyEditText (Sender: TObject; ACol, ARow: Integer; var Value: String) Occurs when you finish editing a cell. Allows you to change the entered value. More info.
 OnAfterEdit (Sender: TObject; ACol, ARow: Integer; Value: String) Occurs when the cell editing is successfully completed. More info.
 OnAfterRowMove (Sender: TObject; FromPos, ToPos: Integer) Occurs when the user has successfully moved the row to a new position.
 OnAfterSort (Sender: TObject; ACol: Integer) Occurs after the column is sorted.
 OnBeforeEdit (Sender: TObject; ACol, ARow: Integer; var Accept: Boolean) Occurs before the cell enters edit mode. Allows you to disable editing. More info.

My Visual Database

154 / 222

 OnCellClick (Sender: TObject; ACol, ARow: Integer) Occurs when the user clicks on a cell. More info.
 OnCellDoubleClick (Sender: TObject; ACol, ARow: Integer) Occurs when the user double-clicks a cell.
 OnChange (Sender: TObject) Occurs after the component has been populated with data from the database.
 OnClick (Sender: TObject) Occurs when the user clicks the component.
 OnColumnResize (Sender: TObject; ACol: Integer) Occurs when the user resize the column.
 OnDoubleClick (Sender: TObject) Occurs when the user double-clicks the left mouse button when the mouse pointer is over the component.
 OnEditAccept (Sender: TObject; ACol, ARow: Integer; Value: String; var Accept: Boolean) Occurs when the user has finished editing a cell, such as selecting another cell or pressing Enter. Allows you to reject the entered value. More info.
 OnEnter (Sender: TObject) Occurs when a component receives the input focus.
 OnExit (Sender: TObject) Occurs when the input focus shifts away from one component to another.
 OnFooterClick (Sender: TObject; ACol: Integer) Occurs when the user clicks on the footer.
 OnHeaderClick (Sender: TObject; ACol: Integer) Occurs when the user clicks on a column header.
 OnHeaderDoubleClick (Sender: TObject; ACol: Integer) Occurs when the user double-clicks a column header.
 OnInputAccept (Sender: TObject; var Accept: Boolean) Occurs before a new record is added from the input line. Allows you to cancel the creation of a new record. More info.
 OnInputSelectCell (Sender: TObject; ACol: Integer) Occurs when the user has moved to the input field.
 OnKeyDown (Sender: TObject; var Key: Word; Shift, Alt, Ctrl: boolean) Occurs when a user presses any key while the form has focus.
 OnKeyPress (Sender: TObject; var Key: Char) Occurs when a key is pressed. Note that this procedure handles printable characters only.
 OnKeyUp (Sender: TObject; var Key: Word; Shift, Alt, Ctrl: boolean) Occurs when the user releases a key that was pressed.
 OnLoadProgress (Sender: TObject; ACol, ARow: Integer) Occurs when a text file is loaded into a component using the LoadFromTextFile method
 OnMouseDown (Sender: TObject; MouseLeft, MouseRight, MouseMiddle: boolean; Shift,
Alt, Ctrl: boolean; X, Y: Integer)

 Occurs when the user presses a mouse button with the mouse pointer over a component.

 OnMouseEnter (Sender: TObject) Occurs when the user moves the mouse into a component.
 OnMouseLeave (Sender: TObject) Occurs when the user moves the mouse outside of a component.
 OnMouseMove (Sender: TObject; Shift, Alt, Ctrl: boolean; X, Y: Integer) Occurs when the user moves the mouse pointer while the mouse pointer is over a component.
 OnMouseUp (Sender: TObject; MouseLeft, MouseRight, MouseMiddle: boolean; Shift, Alt,
Ctrl: boolean; X, Y: Integer)

 Occurs when the user releases a mouse button that was pressed with the mouse pointer over a component.

 OnResize (Sender: TObject) Occurs when a component is resized.
 OnRowMove (Sender: TObject; FromPos, ToPos: Integer; var Accept: Boolean) Occurs when the user has moved a row to a new position. Allows you to cancel the move. More info.
 OnSortColumn (Sender: TObject; ACol: Integer; Ascending: Boolean) Occurs before the column is sorted.
 OnDropFiles (Sender: TObject; ArrayOfFiles: array of string; X, Y: Integer) Occurs when user tries to drag and drop a file from explorer to a form. More info.

Created with the Standard Edition of HelpNDoc: Full-featured EPub generator

property dbLimit: Integer

Description

Allows you to set the maximum number of records that will be populated in the component.

This property works only when the component displays data with the "Search" action button or when the
component option "Show all records from table" is used.

To remove the limit on the number of records, set the value to 0.

Example

Form1.TableGrid1.dbLimit := 1000;
Form1.TableGrid1.dbLimit := 0; // removes the limit on the number of records

Created with the Standard Edition of HelpNDoc: Benefits of a Help Authoring Tool

https://www.helpndoc.com/create-epub-ebooks
https://www.helpauthoringsoftware.com

My Visual Database

155 / 222

property dbOffSet: Integer

Description

Allows you to set an offset when retrieving records from the database.

Typically, this property is used to implement page-by-page output of records in a component.

To remove the offset for records, set it to 0.

Example

Form1.TableGrid1.dbOffSet := 1000;
Form1.TableGrid1.dbOffSet := 0; // removes offset of records

A project with an example of page-by-page output of records.

Created with the Standard Edition of HelpNDoc: Write EPub books for the iPad

property dbSQL: string

Description

Contains an SQL query if the component was populated with data using the button with the "SQL query"
action.

It also allows you to set your own SQL query that will be executed when the dbSQLExecute method is
called.

Example

procedure Form1_Button1_OnClick (Sender: string; var Cancel: boolean);
begin
 // include the id field into SQL query, if the possibility to edit or
delete records is necessary
 // include "$autoinc" into SQL query if a column with sequential numbering
is required
 Form1.TableGrid1.dbSQL:='SELECT id, "$autoinc", lastname, firstname,
salary FROM employees';

 //Form1.GridEmployees.dbParentTable := 'ParentTable'; // optionally
 //Form1.GridEmployees.dbParentTableId := 1; // optionally

 // optional, in case of complex SQL query, specify the main database table
manually,
 // to which the id field specified in the SQL query in the dbSQL property
will belong
 Form1.TableGrid1.dbGeneralTable := 'employees';

http://myvisualdatabase.com/forum/viewtopic.php?pid=36147
https://www.helpndoc.com/create-epub-ebooks

My Visual Database

156 / 222

 // specify header names for columns, separated by commas,
 // if it is necessary to hide a column in a component, specify the name
delete_col, as a rule, it is useful to hide the id field
 Form1.TableGrid1.dbListFieldsNames :='delete_col,#,name2,name3,name4';
 Form1.TableGrid1.dbSQLExecute; // Execute an SQL query
end;

Created with the Standard Edition of HelpNDoc: Qt Help documentation made easy

property dbPopupMenu: TPopupMenu

Description

Provides access to the component's popup menu.

Allows you to configure the popup menu.

Examples

// hide menu item
Form1.TableGrid1.dbPopupMenu.Items[0].Visible := False;

// disable menu item
Form1.TableGrid1.dbPopupMenu.Items[0].Enabled := False;

// programmatically click on the first menu item (numbering starts from 0)
Form1.TableGrid1.dbPopupMenu.Items[0].Click;

// renaming menu items
procedure Form1_OnShow (Sender: TObject; Action: string);
begin
 Form1.TableGrid1.dbPopupMenu.Items[0].Caption := 'Show record 2';
 Form1.TableGrid1.dbPopupMenu.Items[1].Caption := 'Delete record 2';
 Form1.TableGrid1.dbPopupMenu.Items[3].Caption := 'Copy cell 2';
 Form1.TableGrid1.dbPopupMenu.Items[4].Caption := 'Copy 2';
 Form1.TableGrid1.dbPopupMenu.Items[5].Caption := 'Copy all 2';
 Form1.TableGrid1.dbPopupMenu.Items[7].Caption := 'Find 2';
end;

// adding menu items and submenu
procedure Form1_OnShow (Sender: TObject; Action: string);
var
 SubMenu: TMenuItem;
 MenuItem: TMenuItem;
begin
 SubMenu := TMenuItem.Create (Form1);
 SubMenu.Caption := 'SubMenu';
 MenuItem := TMenuItem.Create (Form1);
 MenuItem.Caption := 'Item';

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework

My Visual Database

157 / 222

 MenuItem.OnClick := @MenuClick1;
 Form1.TableGrid1.dbPopupMenu.Items.Insert(0, SubMenu);
 Form1.TableGrid1.dbPopupMenu.Items[0].Add(MenuItem);
end;

procedure MenuClick1;
begin
 ShowMessage('Hello from PopupMenu');
end;

Created with the Standard Edition of HelpNDoc: Full-featured multi-format Help generator

property Cell[x,y]: TCell

Description

Property to access additional properties of the specified component cell (x - column, y - row).

The class has the following properties

 Property Description
 AsBoolean: Boolean Gets or sets value of item in Boolean type.
 AsDateTime: TDateTime Gets or sets value of item in TDateTime type.
 AsFloat: Double Gets or sets value of item in Double type.
 AsInteger: Integer Gets or sets value of item in Integer type.
 Color: TColor Gets or sets Cell Color.
 Empty: Boolean Determines whether the cell contains any value.
 Hint: string Gets or sets Cell Hint.
 ObjectReference: TObject Gets or sets Reference to TObject object.
 FontStyle: TFontStyles Gets or sets Cell Font Style. Available values: fsBold+fsItalic+fsUnderline+fsStrikeOut
 Tag: Integer Allows you to assign a number for your own needs.
 TextColor: TColor Specifies the font color for the cell.

Example

// changes the color of the first cell
procedure Form1_TableGrid1_OnChange (Sender: TObject);
begin
 Form1.TableGrid1.Cell[0,0].TextColor := clRed;
end;

Created with the Standard Edition of HelpNDoc: Produce Kindle eBooks easily

property Columns: TNxColumns

Description

Property for accessing additional column properties and methods.

https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

My Visual Database

158 / 222

The class has the following properties

 Properties and methods Description
 procedure Add (Source: TNxCustomColumn): TNxCustomColumn Adds a new column with the specified class.
 procedure Clear Destroys all columns.
 property Count: Integer Returns the number of columns.
 procedure Delete (index: integer) Deletes the column with the specified index, the column numbering starts from 0.
 function InsertCheckBoxColumn(Pos: Integer): TNxCustomColumn Inserting a column with a CheckBox (TNxCheckBoxColumn) in the specified position, column numbering starts from 0.
 function InsertGraphicColumn(Pos: Integer): TNxCustomColumn Inserting a graphical column (TNxGraphicColumn) in the specified position, the column numbering starts from 0.
 function InsertTreeColumn(Pos: Integer): TNxCustomColumn Inserting a tree column (TNxTreeColumn) in the specified position, the column numbering starts from 0.
 property LastAdded: TNxCustomColumn Returns a reference to the last added column.

Examples

// As a rule, the creation of additional columns should happen in the event of
the OnChange component

// adding a column of the specified class, available classes:
// TNxTextColumn, TNxNumberColumn, TNxDateColumn, TNxTimeColumn,
TNxCheckBoxColumn, TNxListColumn, TNxGraphicColumn, TNxTreeColumn
try
 Form1.TableGrid1.Columns.Add(TNxTextColumn);
except
end;
Form1.TableGrid1.Columns.LastAdded.Color := clWhite;

// Inserting a column with a CheckBox (TNxCheckBoxColumn) at the specified
position, column numbering starts from 0.
Form1.TableGrid1.Columns.InsertCheckBoxColumn(0);

Created with the Standard Edition of HelpNDoc: Produce Kindle eBooks easily

property Columns[i]: TNxCustomColumn

Description

Property to access the properties of the specified column.

The class has the following properties

 Property Type Description
 Alignment TAlignment Sets the alignment of the column content. Available values: taCenter, taRightJustify, taLeftJustify
 Enabled Boolean Determines the availability of the column to the user.
 Footer TColumnFooter The property is responsible for the footer of the component. More info.
 Header TColumnHeader The property is responsible for the headers of the component. More info.
 Options TColumnOptions Additional settings for the column. More info.
 SlideAnchors TAnchors Makes sense when the GridStyles component property = gsSlides. Example.
 SlideBounds TNxSlideBounds Makes sense when the GridStyles component property = gsSlides. Example.

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle
examples/Slide Grid with picture.zip
examples/Slide Grid with picture.zip

My Visual Database

159 / 222

 SlideCaption String Makes sense when the GridStyles component property = gsSlides. Example.
 SlideCaptionLocation TSlideCatpionLocation Makes sense when the GridStyles component property = gsSlides. Example.
 Sorted Boolean Sorts the column.
 SortKind TSortKind Specifies whether the column is sorted in ascending or descending order. Values: skAscending, skDescending
 SortType TSortType Defines the sort type for the column. Values: stAlphabetic, stBoolean, stNumeric, stDate, stIP
 Tag Integer Allows you to assign a number to the column for your own needs.
 TagString String Allows you to assign a string to a column for your own needs.
 VerticalAlignment TVerticalAlignment Sets the vertical alignment of the column content. Available values: vaTop, vaMiddle, vaBottom
 Visible Boolean Determines the visibility of the column in the component.
 Width Integer Sets the width of the column in the component.
 WrapKind TWrapKind Sets the behavior of text that does not fit in the cell for a given column. Values: wkNone, wkEllipsis, wkPathEllipsis, wkWordWrap

Created with the Standard Edition of HelpNDoc: Easily create CHM Help documents

property Footer: TColumnFooter

Description

This property is responsible for the footer of the component.

The class has the following properties

 Property Type Description
 Alignment TAlignment Sets the alignment of the footer content in the column. Available values: taCenter, taRightJustify, taLeftJustify
 Caption String Footer text.
 Color TColor Background Color.
 FormulaKind TFormulaKind Formula for the calculation. Available values: fkNone, fkAverage, fkCount, fkDistinct, fkMaximum, fkMinimum, fkSum, fkCustom
 FormatMask String Allows you to set the format for numbers, text or date/time.
 FormatMaskKind TFormatMaskKind Defines the way the mask in the FormatMask property is handled. Available values: mkText, mkFloat
 TextAfter String Specifies the text before the calculated value.
 TextBefore String Specifies the text after the calculated value.

Example

// format the value in the basement for the columns of the numeric type (REAL,
CURRENCY, INTEGER)
// more details about using formatting
http://docwiki.embarcadero.com/Libraries/XE3/en/System.SysUtils.FormatFloat
procedure Form1_TableGrid1_OnChange (Sender: TObject);
begin
 TNxNumberColumn(Form1.TableGrid1.Columns[0]).Footer.TextBefore := Price:
';
 TNxNumberColumn(Form1.TableGrid1.Columns[0]).Footer.TextBefore := '$';
 TNxNumberColumn(Form1.TableGrid1.Columns[0]).Footer.FormatMaskKind :=
mkFloat;
 TNxNumberColumn(Form1.TableGrid1.Columns[0]).Footer.FormatMask :=
'#,##0.00';
end;

examples/Slide Grid with picture.zip
examples/Slide Grid with picture.zip
https://www.helpndoc.com/feature-tour
http://docwiki.embarcadero.com/Libraries/XE3/en/System.SysUtils.FormatFloat
http://docwiki.embarcadero.com/Libraries/XE3/en/System.MaskUtils.FormatMaskText
http://docwiki.embarcadero.com/Libraries/XE3/en/System.SysUtils.FormatDateTime
http://docwiki.embarcadero.com/Libraries/XE3/en/System.SysUtils.FormatFloat

My Visual Database

160 / 222

Created with the Standard Edition of HelpNDoc: Write EPub books for the iPad

property Header: TColumnHeader

Description

This property is responsible for the footer of the component.

The class has the following properties

 Property Type Description
 Alignment TAlignment Sets the alignment of the header in the column. Available values: taCenter, taRightJustify, taLeftJustify
 Caption String Title text.
 Color TColor Header background color. Ignored if component property EnableVisualStyles = True
 DisplayMode TDisplayMode Defines the mode of displaying text and graphics in the header. Available values: dmImageOnly, dmTextAndImage, dmTextOnly
 Glyph TBitmap Allows you to put a bmp image in the header.
 Hint String A tooltip for the header.
 MultiLine Boolean Allows you to use multiple strings in the header.
 Orientation THeaderOrientation Defines the orientation of the header. Available values: hoHorizontal, hoVertical

Example

// place the picture in the header
procedure Form1_TableGrid1_OnChange (Sender: TObject);
begin
 Form1.TableGrid1.Columns[0].Header.DisplayMode := dmTextAndImage;
 // get the image from Image1 placed on the form, the image must be in bmp
format
 Form1.TableGrid1.Columns[
0].Header.Glyph.Assign(Form1.Image1.Picture.Bitmap);
end;

Created with the Standard Edition of HelpNDoc: Free Kindle producer

property Options: TColumnOptions

Description

Additional settings for the column.

The set has the following values.

 Value Description
 coAutoSize Not used. For automatic column widths, use the BestFitColumns method.
 coCanClick Determines whether the header of a given column can be clicked to sort.

https://www.helpndoc.com/create-epub-ebooks
https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

My Visual Database

161 / 222

 coCanInput Makes sense if the TableGrid.Options property has the value goInput. Allows you to enter a value.
 coCanSort Determines whether sorting is executed when you click on the header of a given column.
 coDisableMoving Disables drag-and-drop of columns.
 coEditing Specifies the ability to edit the text in the rows of a given column.
 coEditorAutoSelect Determines whether text is automatically selected when the input cursor is set in a cell of a given column.
 coFixedSize Disables the resizing of this column.
 coShowTextFitHint Determines whether a hint will be shown if the contents of the cell do not fit.

Example

// As a rule, it is necessary to change column settings in the OnChange event
procedure Form1_TableGrid1_OnChange (Sender: TObject);
begin
 Form1.TableGrid1.Columns[0].Options := Form1.TableGrid1.Columns[0].Options
- coCanSort; // disables sorting for the first column
 Form1.TableGrid1.Columns[1].Options := Form1.TableGrid1.Columns[1].Options
+ coFixedSize; // Disables the ability to resize the second column
end;

Created with the Standard Edition of HelpNDoc: Free HTML Help documentation generator

property HorzScrollBar: TNxScrollBar

Description

A property for accessing additional scroll properties and methods.

The class has the following properties and methods

 Properties and methods Description
 property AutoHide: Boolean Determines whether to hide the scrollbar if it is not needed.
 procedure BeginUpdate The method disables the scroll update. After the necessary changes, you need to call the EndUpdate method.
 procedure EndUpdate The method enables a scroll update.
 property Enabled: Boolean Determines the availability of the scroll to the user.
 procedure First The method sets the scroll position to the beginning.
 function IsFirst: Boolean The function returns True if the scroll is at the beginning position.
 function IsLast: Boolean The function returns True if the scroll is at the end position.
 procedure Last The method sets the scroll position to the end.
 property ManualScroll: Boolean Allows you to enable manual scrolling. In this case, the scrolling will need to be implemented using scripts.
 property MoveBy(Distance: Integer) The method moves the scroll position by the specified value. To move the scroll in the opposite direction, use negative values.
 procedure Next The method moves the scroll position to the right (move step can be set in pixels in the SmallChange property, default is 5).
 property PageSize: Integer Returns the number of visible rows.
 procedure PageDown The method moves the scroll position, just like when you press the PageDown keyboard button.
 procedure PageUp The method moves the scroll position, just like when you press the PageUp keyboard button.

https://www.helpndoc.com

My Visual Database

162 / 222

 property Position: Integer The property allows you to get or set a scroll position.
 procedure Prior The method moves the scroll position to the left (move step can be set in pixels in the SmallChange property, default is 5).
 property SmallChange: Integer Allows you to set the step for moving the scroll in pixels.
 property Visible: Boolean Determines the visibility of the scroll bar.

Created with the Standard Edition of HelpNDoc: Produce online help for Qt applications

property VertScrollBar: TNxScrollBar

Description

A property for accessing additional scroll properties and methods.

The class has the following properties and methods

 Properties and methods Description
 property AutoHide: Boolean Determines whether to hide the scrollbar if it is not needed.
 procedure BeginUpdate The method disables the scroll update. After the necessary changes, you need to call the EndUpdate method.
 procedure EndUpdate The method enables a scroll update.
 property Enabled: Boolean Determines the availability of the scroll to the user.
 procedure First The method sets the scroll position to the beginning.
 function IsFirst: Boolean The function returns True if the scroll is at the beginning position.
 function IsLast: Boolean The function returns True if the scroll is at the end position.
 procedure Last The method sets the scroll position to the end.
 property ManualScroll: Boolean Allows you to enable manual scrolling. In this case, the scrolling will need to be implemented using scripts.
 property MoveBy(Distance: Integer) The method moves the scroll position by the specified value. To move the scroll in the opposite direction, use negative values.
 procedure Next The method moves the scroll position to the down (move step can be set in pixels in the SmallChange property, default is 5).
 property PageSize: Integer Returns the number of visible rows.
 procedure PageDown The method moves the scroll position, just like when you press the PageDown keyboard button.
 procedure PageUp The method moves the scroll position, just like when you press the PageUp keyboard button.
 property Position: Integer The property allows you to get or set a scroll position.
 procedure Prior The method moves the scroll position to the up (move step can be set in pixels in the SmallChange property, default is 5).
 property SmallChange: Integer Allows you to set the step for moving the scroll in pixels.
 property Visible: Boolean Determines the visibility of the scroll bar.

Created with the Standard Edition of HelpNDoc: What is a Help Authoring tool?

property Options: TGridOptions

Description

Additional component settings.

You can combine the settings using the listed values.

 Value Description
 goArrowKeyExitEditing Exit cell editing by pressing up, down, left, right buttons
 goCanHideColumn The user will be able to hide columns with the mouse.
 goDisableColumnMoving Disables the user to move columns with the mouse.

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
https://www.helpauthoringsoftware.com

My Visual Database

163 / 222

 goDisableKeys Disables moving between rows with arrows on the keyboard.
 goEscClearEdit When editing a cell, allows you to clear it by pressing Esc.
 goFooter Makes the component's footer visible.
 goGrid Shows horizontal and vertical lines.
 goHeader Shows the headings for the columns.
 goIndicator Shows the indicator of the selected row.
 goInput Shows the input bar.
 goLockFixedCols Disables moving fixed columns with mouse (FixedCols).
 goMultiSelect Allows you to select multiple records using the Ctrl or Shift key.
 goRowResizing Allows you to change the height of rows with the mouse (goIndicator must also be activated)
 goRowMoving Allows you to move rows with the mouse.
 goSecondClickEdit Editing a cell with a double click of the mouse.
 goSelectFullRow Selects a whole row, otherwise individual cells will be selected.

The default settings are as follows:
goDisableColumnMoving, goGrid, goHeader, goSecondClickEdit, goSelectFullRow

Example

procedure Form1_Button1_OnClick (Sender: TObject; var Cancel: boolean);
begin
 // disable lines in the component
 Form1.GridSearch.Options := Form1.GridSearch.Options - goGrid;

 // Set the necessary settings for the component
 Form1.GridSearch.Options := goDisableColumnMoving + goGrid + goHeader +
goSecondClickEdit + goSelectFullRow + goMultiSelect;
end;

Created with the Standard Edition of HelpNDoc: Free iPhone documentation generator

property Row[i]: TRow

Description

Property to access additional properties of the specified row.

The class has the following properties

 Property Description
 ChildCount: Integer Number of child elements (makes sense if there is a TNxTreeColumn).
 Expanded: Boolean Whether the row is expanded to show the children (makes sense if there is a TNxTreeColumn).
 HasChildren: Boolean Does the row have children (makes sense if there is a TNxTreeColumn).
 ID: Integer Contains record ID (id field from database).
 ImageIndex: Integer Icon index from TImageList in property TNxTreeColumn(Form1.TreeView1.Columns[0]).Images
 Level: Integer Contains the nesting level (makes sense if there is a TNxTreeColumn).
 ParentRow: TRow Reference to the parent row (makes sense if there is a TNxTreeColumn).
 RowHeight: Integer Gets or sets the height of a Row.
 Selected: Boolean Allows you to know if a row is selected or not.
 Shown: Boolean Allows you to know if the given row is visible (makes sense if there is a TNxTreeColumn).

https://www.helpndoc.com/feature-tour/iphone-website-generation

My Visual Database

164 / 222

Example

procedure Form1_Button1_OnClick (Sender: TObject; var Cancel: boolean);
begin
 // show the ID of the specified row
 ShowMessage(Form1.TableGrid1.Row[0].ID);
end;

Created with the Standard Edition of HelpNDoc: Free Web Help generator

procedure BestFitColumns(BestFitMode: TBestFitMode = bfCells)

Description

The method allows you to automatically adjust the width of the columns.

As a rule, this method should be called in the event of the OnChange component.

You can specify the following values as a parameter:

bfCells - autosize width by cells contents.
bfBoth - autosize width by contents of cells and column titles.
bfHeader - autosize width by column headers.

Example

procedure Form1_TableGrid1_OnChange (Sender: TObject);
begin
 Form1.TableGrid1.BestFitColumns(bfBoth);
end;

Created with the Standard Edition of HelpNDoc: Free EPub producer

procedure BestFitRow(const Index: Integer)

Description

The method automatically adjusts the height of the row, depending on the contents of the cells in this row.

As a rule, this method must be called in the event of the OnChange component.
Also, you must assign the WrapKind := wkWordWrap property to columns to allow wrap text in cells.

Example

// automatically adjust the height of all rows in the component
procedure Form1_TableGrid1_OnChange (Sender: string);
var
 i, c: integer;

https://www.helpndoc.com
https://www.helpndoc.com/create-epub-ebooks

My Visual Database

165 / 222

begin
 c := Form1.TableGrid1.Columns.Count - 1;
 for i := 0 to c do
 begin
 Form1.TableGrid1.Columns[i].VerticalAlignment := taAlignTop; // set
the vertical alignment in the cells of the column
 Form1.TableGrid1.Columns[i].WrapKind := wkWordWrap; // enable the
possibility of wrapping the strings in the cells of the column
 end;

 c := Form1.TableGrid1.RowCount - 1;
 for i := 0 to c do Form1.TableGrid1.BestFitRow(i); // for each row we call
the method for auto height adjustment
end;

// also updates the height of the rows when you resize the columns
procedure Form1_TableGrid1_OnColumnResize (Sender: TObject; ACol: Integer);
var
 i, c: integer;
begin
 c := Form1.TableGrid1.RowCount - 1;
 for i := 0 to c do Form1.TableGrid1.BestFitRow(i); // for each row we call
the method for auto height adjustment
end;

Created with the Standard Edition of HelpNDoc: Create cross-platform Qt Help files

procedure OnApplyEditText (Sender: TObject; ACol, ARow: Integer; var Value: String)

Description

Occurs when you finish editing a cell. Allows you to change the entered value.

When editing a cell, the following chain of events is triggered: OnBeforeEdit > OnAplyEditText >
OnEditAccept > OnAfterEdit

In the parameters of this event there is a Value parameter that allows you to change the value entered by
the user.

Example

procedure Form1_TableGrid1_OnApplyEditText (Sender: TObject; ACol, ARow:
Integer; var Value: String);
begin
 if Value = 'Hello' then Value := 'Bye'; // If the entered value is Hello,
then change it to Bye
end;

Created with the Standard Edition of HelpNDoc: Easy to use tool to create HTML Help files and Help web sites

procedure OnAfterEdit(Sender: TObject; ACol, ARow: Integer; Value: String)

Description

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
https://www.helpndoc.com/help-authoring-tool

My Visual Database

166 / 222

Occurs when editing a cell is successfully completed.

When editing a cell, the following chain of events is triggered: OnBeforeEdit > OnAplyEditText >
OnEditAccept > OnAfterEdit

Example

procedure Form1_TableGrid1_OnAfterEdit (Sender: TObject; ACol, ARow: Integer;
Value: String);
begin
 ShowMessage(Value); // display the value entered by the user in the cell
end;

Created with the Standard Edition of HelpNDoc: Produce Kindle eBooks easily

procedure OnBeforeEdit(Sender: TObject; ACol, ARow: Integer; var Accept: Boolean)

Description

It is triggered before the cell enters edit mode. Allows you to disable editing.

When editing a cell, the following chain of events is triggered: OnBeforeEdit > OnAplyEditText >
OnEditAccept > OnAfterEdit

The parameters of this event contain the Accept parameter that allows you to prevent editing of a cell.

Example

procedure Form1_TableGrid1_OnBeforeEdit (Sender: TObject; ACol, ARow: Integer;
var Accept: Boolean);
begin
 // Prevent editing columns 2 and 3 (numbering columns from 0)
 if (ACol = 3) and (ARow = 4) then Accept := False;

 // Cancel edit if you entered an empty value
 if Form1.TableGrid1.Cells[ACol, ARow] = '' then Accept := False;
end;

Created with the Standard Edition of HelpNDoc: Full-featured EBook editor

procedure OnCellClick(Sender: TObject; ACol, ARow: Integer)

Description

It is triggered when the user clicked on a cell.

The event contains parameters ACol and ARow, which contain the column number and row number,
respectively, on which the user clicked.

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle
https://www.helpndoc.com/create-epub-ebooks

My Visual Database

167 / 222

Example

// show the contents of the cell clicked on by the user
procedure Form1_TableGrid1_OnCellClick (Sender: TObject; ACol, ARow: Integer);
begin
 ShowMessage(Form1.TableGrid1.Cells[ACol, ARow]);
end;

Created with the Standard Edition of HelpNDoc: Free help authoring tool

procedure OnEditAccept(Sender: TObject; ACol, ARow: Integer; Value: String; var Accept:
Boolean)

Description

Occurs when the user has finished editing a cell, such as selecting another cell or pressing Enter. Allows
you to reject the entered value.

When editing a cell, the following chain of events is triggered: OnBeforeEdit > OnAplyEditText >
OnEditAccept > OnAfterEdit

The parameters of this event contain an Accept parameter that allows you to reject a value entered in a
cell.

Example

procedure Form1_TableGrid1_OnEditAccept (Sender: TObject; ACol, ARow: Integer;
Value: String; var Accept: Boolean);
begin
 // prohibits entering empty values
 if Value = '' then Accept := False;

 // prohibits entering values shorter than 3 characters
 if Length(Value) < 3 then Accept := False;
end;

Created with the Standard Edition of HelpNDoc: Free CHM Help documentation generator

procedure OnInputAccept(Sender: TObject; var Accept: Boolean)

Description

Occurs before a new record is added from the input line. Allows you to cancel the creation of a record.

The parameters of this event include the Accept parameter, which allows you to cancel the creation of a
new record.

Example

procedure Form1_TableGrid1_OnInputAccept (Sender: TObject; var Accept:

https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com

My Visual Database

168 / 222

Boolean);
begin
 // prevents an add record if "123" is entered in the first column
 if Form1.TableGrid1.Columns[0].InputValue = '123' then Accept := False;
end;

Created with the Standard Edition of HelpNDoc: Free Web Help generator

procedure OnRowMove(Sender: TObject; FromPos, ToPos: Integer; var Accept: Boolean)

Description

Occurs when the user has moved a row to a new position. Allows you to cancel the move.

The parameters of this event include the Accept parameter, which allows you to cancel the move of the
row.

Example

// prohibit moving the first line to the very end
procedure Form1_TableGrid1_OnRowMove (Sender: TObject; FromPos, ToPos:
Integer; var Accept: Boolean);
begin
 if (FromPos=0) and (ToPos = Form1.TableGrid1.RowCount-1) then
 begin
 Accept := False;
 ShowMessage('You cannot move the first line to the end.');
 end;
end;

Created with the Standard Edition of HelpNDoc: Easily create Qt Help files

Counter

Description

Allows you to assign a unique number to records.

Class: TdbEditCount

Properties
 Property Type Description

https://www.helpndoc.com
https://www.helpndoc.com/feature-tour

My Visual Database

169 / 222

 sqlValue String

 Returns the value of a component, for use in SQL queries. The property value already contains escape quotes. If the component is set to Numbers = True or
Currency = True, the escape quotes will be omitted. In case of an empty value, it will return NULL

 example: SQLExecute ('INSERT INTO tablename (fieldname) VALUES ('+Form1.EditCounter1.sqlValue+')');
 Alignment TAlignment Determines how the text is aligned within the text edit control. Available values: taCenter, taRightJustify, taLeftJustify
 AutoSelect Boolean Determines whether all the text in the edit control is automatically selected when the control gets focus.
 BorderStyle TBorderStyle Determines whether the edit control has a single line border around the client area. Available values: bsSingle, bsNone

 CanFocus Boolean

 It checks if the component can get input focus, which is usually necessary before using the SetFocus method. If a component has Visible = False or Enabled = False
property, or if the component is located on a parent component with those properties, using the SetFocus method will cause an error.

example: if Form1.EditCounter1.CanFocus then Form1.EditCounter1.SetFocus;
 CharCase TEditCharCase Determines the case of the text within the edit control. Available values: ecNormal, ecUpperCase, ecLowerCase
 Color TColor Specifies the background color of the control. More info.
 Cursor TCursor Specifies the image used to represent the mouse pointer when it passes into the region covered by the control. More info.
 dbTable String Determines which database table a component belongs to.
 dbField String Determines which field of the database table this component belongs to.

 dbIncremSearch String Allows you to specify the name of the button on the current form with the "Search" or "SQL query" action, which will be automatically pressed when the user enters
text for instant search.

 Enabled Boolean Controls whether the component responds to mouse, keyboard, and timer events.
 Focused Boolean Determines whether the control has input focus.
 Font TFont Allows you to set font name, size, color and style. More info.
 GetTextLen Integer Returns the length of the component's text.
 Hint String Hint contains the text string that appears when the user moves the mouse over the component., see also ShowHint
 MaxLength Integer Specifies the maximum number of characters the user can enter into the edit component.
 Name String The name of the component.

 PasswordChar String Indicates the character, if any, to display in place of the actual characters typed in the control. Usually used to enter a password. As a rule, the asterisk symbol is
used: *

 ReadOnly Boolean Determines whether the user can change the text of the edit component.
 ShowHint Boolean Specifies whether to show the Help Hint when the mouse pointer moves over the component, see also Hint
 TabOrder Integer Indicates the position of the component in its parent's tab order. TabOrder is the order in which child components are visited when the user presses the Tab key.
 TabStop Boolean Determines whether the user can tab to a control. Use the TabStop to allow or disallow access to the control using the Tab key.
 Tag Integer Allows you to assign a number to a component for your own needs.
 TagString String Allows you to assign a string to a component for your own needs.
 Text String Contains a text string associated with the component.
 TextHint String A hint or message to be displayed when the Text property is empty.
 Value Double The numerical value of the component.
 Visible Boolean Specifies whether the component appears onscreen.
 Left Integer Specifies the horizontal coordinate of the left edge of a component relative to its parent.
 Top Integer Specifies the vertical coordinate of the upper-left of a component relative to its parent.
 Width Integer Specifies the horizontal size of the component in pixels.
 Height Integer Specifies the vertical size of the component in pixels.

Methods
 Method Description
 procedure Clear Deletes all text from the edit component.
 procedure CopyToClipboard Copies the selected text in the edit component to the Clipboard.
 procedure CutToClipboard Copies the selected text to the Clipboard and then deletes the selection.
 procedure PasteFromClipboard Pastes the contents of the Clipboard into edit component, replacing the current selection.
 procedure SelectAll Selects all text in the edit component.

My Visual Database

170 / 222

 procedure SetFocus Gives the input focus to the component.

Events
 Event Description
 OnChange Occurs when the text for the edit component may have changed.
 OnClick Occurs when the user clicks the component.
 OnDoubleClick Occurs when the user double-clicks the left mouse button when the mouse pointer is over the component.
 OnEnter Occurs when a component receives the input focus.
 OnExit Occurs when the input focus shifts away from one component to another.
 OnKeyDown Occurs when a user presses any key while the form has focus.
 OnKeyPress Occurs when a key is pressed. Note that this procedure handles printable characters only.
 OnKeyUp Occurs when the user releases a key that was pressed.
 OnMouseDown Occurs when the user presses a mouse button with the mouse pointer over a component.
 OnMouseEnter Occurs when the user moves the mouse into a component.
 OnMouseLeave Occurs when the user moves the mouse outside of a component.
 OnMouseMove Occurs when the user moves the mouse pointer while the mouse pointer is over a component.
 OnMouseUp Occurs when the user releases a mouse button that was pressed with the mouse pointer over a component.
 OnDropFiles Occurs when user tries to drag and drop a file from explorer to a form. More info.

Created with the Standard Edition of HelpNDoc: Full-featured Documentation generator

DBFile

Description

The component is used to save the file to the database and retrieve it from the database.

Class: TdbFileToDatabase

Properties
 Property Type Description
 dbCopyTo String Allows you to specify where you want the file to be copied automatically. More info.

 dbFileName String If the Type = LinkFile property, then the property returns the full path of the file location, if the CopyTo property is also defined, then the property returns the file
path relative to the database file location (only for SQLite). If Type = StoreFile, then the property returns the location of the file when it is saved to the database.

 dbFileIsChanged Boolean If the property returns True, then the file in the component has been changed.
 dbInitialDir String Allows you to set the default path for the open and save file dialog.
 Alignment TAlignment Sets the text alignment. Available values: taCenter, taRightJustify, taLeftJustify
 AutoSelect Boolean Determines whether all the text in the edit control is automatically selected when the control gets focus.
 BorderStyle TBorderStyle Determines whether the edit control has a single line border around the client area. Available values: bsSingle, bsNone

 CanFocus Boolean

 It checks if the component can get input focus, which is usually necessary before using the SetFocus method. If a component has Visible = False or Enabled =
False property, or if the component is located on a parent component with those properties, using the SetFocus method will cause an error.

example: if Form1.DBFile1.CanFocus then Form1.DBFile1.SetFocus;
 CharCase TEditCharCase Determines the case of the text within the edit control. Available values: ecNormal, ecUpperCase, ecLowerCase

https://www.helpndoc.com

My Visual Database

171 / 222

 Color TColor Specifies the background color of the control. More info.
 Cursor TCursor Specifies the image used to represent the mouse pointer when it passes into the region covered by the control. More info.
 dbTable String Determines which database table a component belongs to.
 dbField String Determines which field of the database table this component belongs to.
 Enabled Boolean Controls whether the component responds to mouse, keyboard, and timer events.
 Focused Boolean Determines whether the control has input focus.
 Font TFont Allows you to set font name, size, color and style. More info.
 GetTextLen Integer Returns the length of the component's text.
 Hint String Hint contains the text string that appears when the user moves the mouse over the component., see also ShowHint
 LeftButton TEditButton To access the left button properties (Enabled, Hint, Visible).
 MaxLength Integer Specifies the maximum number of characters the user can enter into the edit component.
 Name String The name of the component.
 PopupMenu TPopupMenu Provides access to the component's popup menu from the right button.
 ReadOnly Boolean Determines whether the user can change the text of the edit component.
 RightButton TEditButton To access the properties of the right button (Enabled, Hint, Visible).
 ShowHint Boolean Specifies whether to show the Help Hint when the mouse pointer moves over the component, see also Hint
 TabOrder Integer Indicates the position of the component in its parent's tab order. TabOrder is the order in which child components are visited when the user presses the Tab key.
 TabStop Boolean Determines whether the user can tab to a control. Use the TabStop to allow or disallow access to the control using the Tab key.
 Tag Integer Allows you to assign a number to a component for your own needs.
 TagString String Allows you to assign a string to a component for your own needs.
 Text String Contains a text string associated with the component.
 Visible Boolean Specifies whether the component appears onscreen.
 Left Integer Specifies the horizontal coordinate of the left edge of a component relative to its parent.
 Top Integer Specifies the vertical coordinate of the upper-left of a component relative to its parent.
 Width Integer Specifies the horizontal size of the component in pixels.
 Height Integer Specifies the vertical size of the component in pixels.

Methods
 Method Description
 procedure Clear Deletes all text from the edit component.
 procedure ClearEx Clears the data and text content of the component.
 procedure CopyToClipboard Copies the selected text in the edit component to the Clipboard.
 procedure CutToClipboard Copies the selected text to the Clipboard and then deletes the selection.
 procedure PasteFromClipboard Pastes the contents of the Clipboard into edit component, replacing the current selection.
 procedure SelectAll Selects all text in the edit component.
 procedure SetFocus Gives the input focus to the component.

Events
 Event Description
 OnChange Occurs when you change the text in a component.
 OnClick Occurs when the user clicks the component.
 OnDoubleClick Occurs when the user double-clicks the left mouse button when the mouse pointer is over the component.
 OnEnter Occurs when a component receives the input focus.
 OnExit Occurs when the input focus shifts away from one component to another.

My Visual Database

172 / 222

 OnKeyDown Occurs when a user presses any key while the form has focus.
 OnKeyPress Occurs when a key is pressed. Note that this procedure handles printable characters only.
 OnKeyUp Occurs when the user releases a key that was pressed.
 OnLeftButtonClick Occurs when the left button is pressed.
 OnMouseDown Occurs when the user presses a mouse button with the mouse pointer over a component.
 OnMouseEnter Occurs when the user moves the mouse into a component.
 OnMouseLeave Occurs when the user moves the mouse outside of a component.
 OnMouseMove Occurs when the user moves the mouse pointer while the mouse pointer is over a component.
 OnMouseUp Occurs when the user releases a mouse button that was pressed with the mouse pointer over a component.
 OnRightButtonClick Occurs when the right button is pressed.
 OnDropFiles Occurs when user tries to drag and drop a file from explorer to a form. More info.

Created with the Standard Edition of HelpNDoc: Create HTML Help, DOC, PDF and print manuals from 1
single source

DBImage

Description

The component is used to save images to the database. Supported formats: jpg, bmp, gif, png8, png24.

Class: TdbImageDataBase

Properties
 Property Type Description
 dbCopyTo String Allows you to specify where you want the file to be copied automatically. More info.

 dbFileName String If the Type = LinkFile property, then the property returns the full path of the file location, if the CopyTo property is also defined, then the property returns the file
path relative to the database file location (only for SQLite). If Type = StoreFile, then the property returns the location of the file when it is saved to the database.

 dbImageIsChanged Boolean If the property returns True, it means that the picture file in the component has been changed.
 dbInitialDir String Allows you to set the default path for the open and save file dialog.
 dbShowButtons Boolean Allows you to hide the buttons on a component that appear when you hover your cursor.
 AutoSize Boolean Specifies whether the control sizes itself automatically to accommodate the dimensions of the image.
 ButtonOpen TToolButton Access the properties of the "Open" button.
 ButtonSave TToolButton Access the properties of the "Save" button.
 ButtonDelete TToolButton Access the properties of the "Delete" button.
 Center Boolean Indicates whether the image is centered in the image control.
 Cursor TCursor Specifies the image used to represent the mouse pointer when it passes into the region covered by the control. More info.
 dbTable String Determines which database table a component belongs to.
 dbField String Determines which field of the database table this component belongs to.
 Enabled Boolean Controls whether the component responds to mouse, keyboard, and timer events.
 Hint String Hint contains the text string that appears when the user moves the mouse over the component., see also ShowHint
 isEmpty Boolean It returns True if the component has a picture loaded, otherwise it returns False.
 Name String The name of the component.

 OpenDialogFilter String This property allows you to set a file filter for the dialog box for selecting a picture. Example: Form1.dbImage.OpenDialogFilter := 'JPEG files (*.jpg;*.jpeg)|
.jpg;.jpeg|BMP files (*.bmp)|*.bmp|All files|*.*';

 Picture TPicture Access to picture properties and methods.

 Proportional Boolean Indicates whether the image should be changed, without distortion, so that it fits the bounds of the image control. The property makes sense if the Stretch=True

https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/help-authoring-tool

My Visual Database

173 / 222

property
 ShowHint Boolean Specifies whether to show the Help Hint when the mouse pointer moves over the component, see also Hint
 ShowButtonOpen Boolean Determines whether the "Open" button is displayed or not.
 ShowButtonSave Boolean Determines whether the "Save" button is displayed or not.
 ShowButtonDelete Boolean Determines whether the "Delete" button is displayed or not.
 Stretch Boolean Indicates whether the image should be changed so that it exactly fits the bounds of the image control. s
 Tag Integer Allows you to assign a number to a component for your own needs.
 TagString String Allows you to assign a string to a component for your own needs.
 Visible Boolean Specifies whether the component appears onscreen.
 Left Integer Specifies the horizontal coordinate of the left edge of a component relative to its parent.
 Top Integer Specifies the vertical coordinate of the upper-left of a component relative to its parent.
 Width Integer Specifies the horizontal size of the component in pixels.
 Height Integer Specifies the vertical size of the component in pixels.

Methods
 Method Description
 procedure Clear Clears the contents of the component.
 function CopyToClipboard: Boolean Copies the image to the clipboard.
 procedure LoadFromDatabase (TableName, FieldName: string; id: integer) Loads a picture from the database.

Events
 Event Description
 OnClick Occurs when the user clicks the component.
 OnDoubleClick Occurs when the user double-clicks the left mouse button when the mouse pointer is over the component.
 OnMouseDown Occurs when the user presses a mouse button with the mouse pointer over a component.
 OnMouseEnter Occurs when the user moves the mouse into a component.
 OnMouseLeave Occurs when the user moves the mouse outside of a component.
 OnMouseMove Occurs when the user moves the mouse pointer while the mouse pointer is over a component.
 OnMouseUp Occurs when the user releases a mouse button that was pressed with the mouse pointer over a component.

Created with the Standard Edition of HelpNDoc: iPhone web sites made easy

TreeView

Description

It serves for output and creation of data in a hierarchical form (tree structure). An example of hierarchical
data is the structure of a company.

Class: TdbTreeView

https://www.helpndoc.com/feature-tour/iphone-website-generation

My Visual Database

174 / 222

Properties
 Property Type Description
 dbFilter String Allows you to set an additional filter that will be used to populate the component with data from the database. For example: tablename.fieldname = 1
 dbForeignKey String Specifies which foreign key of the database table this component belongs to. If necessary, you can specify the name of the table.
 dbFieldParentID String Specifies the field that will be used to form the tree structure. The field must be of type "Integer".
 dbGetSqlStatement String The property allows you to get the last SQL query that was used to populate the component with data from the database.

 dbIncremSearch String Allows you to specify the name of the button on the current form with the "Search" or "SQL query" action, which will be automatically pressed when user changes the
value of the component. The property is necessary to implement instant search.

 dbItemID Integer The identifier of the selected record in the component. The identifier corresponds to the id field in the database.
 dbListFieldsNames String Contains header names for columns separated by commas.
 dbPopupMenu TPopupMenu Provides access to the component's popup menu. More info.

 sqlValue String
 Returns the id of the selected record in the component for use in SQL queries. In case of empty value, it returns NULL string

 example: SQLExecute ('INSERT INTO tablename (fieldname) VALUES ('+Form1.TreeView1.sqlValue+')');
 BorderStyle TBorderStyle Определяет наличие бордюра у компонента. Доступные значения: bsSingle, bsNone

 CanFocus Boolean

 It checks if the component can get input focus, which is usually necessary before using the SetFocus method. If a component has Visible = False or Enabled = False
property, or if the component is located on a parent component with those properties, using the SetFocus method will cause an error.

example: if Form1.TreeView1.CanFocus then Form1.TreeView1.SetFocus;
 Canvas TCanvas A class that allows you to draw on a component. More info.
 Cell[x,y] TCell Property to access additional properties of the specified component cell (x - column, y - row). More info.
 Cells[x,y] String Property for accessing the text content of a cell (x - column, y - row).
 ClientWidth Integer The width of the client part of the component (i.e. excluding borders).
 ClientHeight Integer The height of the client part of the component (i.e., excluding the borders).
 Color TColor The background color of the component. More info.
 Columns TNxColumns Property to access additional column properties and methods. More info.
 Columns[i] TNxCustomColumn Property to access the properties of a specified column. More info.
 Cursor TCursor Specifies the image used to represent the mouse pointer when it passes into the region covered by the control. More info.
 Enabled Boolean Controls whether the component responds to mouse, keyboard, and timer events.
 Expanded [Index: Integer] Boolean Defines the state of the node (expanded or collapsed).
 FixedCols Integer Sets the number of fixed columns that will not move when scrolling horizontally.
 Focused Boolean Determines whether the control has input focus.
 Font TFont Allows you to set font name, size, color and style. More info.
 HeaderSize Integer Gets or sets size of columns headers.
 Hint String Hint contains the text string that appears when the user moves the mouse over the component., see also ShowHint
 HorzScrollBar TNxScrollBar Property to access additional scrollbar properties and methods. More info.
 LastAddedRow Integer Returns the index of the last added line. Read-only.
 Name String The name of the component.
 Options TGridOptions Additional component settings. More info.
 Parent TWinControl The parent component on which this component is placed.
 RowCount Integer Gets total number of rows.
 RowSize Integer Gets or sets default size (height) of rows in grid.
 Row[i] TRow Access to additional properties of a row by its index. More info.
 RowVisible[i] Boolean Determines the visibility of the row by its index.
 Selected[i] Boolean Gets or sets specified row's selected state.
 SelectedRow Integer Gets or sets selected Row's Index.
 SelectedColumn Integer Gets or sets Index of selected Column.
 SelectedCount Integer Gets number of selected rows.
 ShowHint Boolean Specifies whether to show the Help Hint when the mouse pointer moves over the component, see also Hint

My Visual Database

175 / 222

 TabOrder Integer Indicates the position of the component in its parent's tab order. TabOrder is the order in which child components are visited when the user presses the Tab key.
 TabStop Boolean Determines whether the user can tab to a control. Use the TabStop to allow or disallow access to the control using the Tab key.
 Tag Integer Allows you to assign a number to a component for your own needs.
 TagString String Allows you to assign a string to a component for your own needs.
 VertScrollBar TNxScrollBar Property to access additional scrollbar properties and methods. More info.
 Visible Boolean Specifies whether the component appears onscreen.
 VisibleRows Integer Gets number of visible rows.
 Left Integer Specifies the horizontal coordinate of the left edge of a component relative to its parent.
 Top Integer Specifies the vertical coordinate of the upper-left of a component relative to its parent.
 Width Integer Specifies the horizontal size of the component in pixels.
 Height Integer Specifies the vertical size of the component in pixels.

Methods
 Method Description
 function dbIndexToID (index: Integer): integer Allows you to get the record ID (database field id) by specifying the row number.

 function dbUpdate: String Forcibly updates data in the component. As a rule, the component updates data automatically if the data has been changed. It also returns the SQL query that
was used to access the database.

 function AddRow (Count: Integer = 1): Integer Adds the specified number of rows to the component. Returns the index of the last added row. The data is not added to the database.
 procedure AddChildRow (const Index: Integer; Position: TChildRowPosition) Adds a child branch for the specified row. No data will be added to the database. Available values of the Position parameter: crFirst, crLast
 procedure BeginUpdate Called before performing a large number of operations on a component to increase performance. The EndUpdate method must be called at the end.
 procedure BestFitColumns (BestFitMode: TBestFitMode = bfCells) The method automatically adjusts the width of the columns. More info.
 procedure BestFitRow (const Index: Integer) The method automatically adjusts the height of the row, depending on the contents of the cells in the given row. More info.
 procedure CalculateFooter (VisibleOnly: Boolean = False) Calculates footer of the component.
 procedure ClearRows Clears rows of of the component.
 procedure CollapseAll It collapses all the nodes of the component.
 procedure DeleteRecord (id: integer) Deletes the record with the specified identifier, with all its child nodes.
 procedure DeleteRow (Index: Integer) Deletes specified row. The record from the database will not be deleted.
 function ExportToExcel (FileName: string = ''; ExcelVisible: boolean = True;
FirsRowColumns: boolean = True): Variant

 Exports data from the component to Excel. Also returns an OLE Excel object, to work with the data later.

 function ExportToLibreCalc (FirsRowColumns: boolean = True): Boolean Exports data from the component to OpenOffice (LibreOffice).
 procedure EndUpdate See BeginUpdate
 procedure ExpandNode (Index: Integer) Expands the specified node of the component.
 procedure ExpandAll Expands all the nodes of the component.
 function GetRowAtPos (X, Y: Integer): Integer Allows you to get the row index by coordinates.
 function GetColumnAtPos (X, Y: Integer): TNxCustomColumn Allows you to get a link to a column by coordinates.
 function GetChildCount (const Index: Integer; Recurse: Boolean = True): Integer Returns the number of child records for the specified row in the Index parameter.
 function GetFirstChild (const Index: Integer): Integer Returns the index of the first child row relative to the row specified in the Index parameter.
 function GetLastChild (const Index: Integer): Integer Returns the index of the last child row relative to the row specified in the Index parameter.
 function GetLevel (const Index: Integer): Integer Returns the nesting level of the specified row.
 function GetNextSibling (const Index: Integer): Integer Returns the index of the next row on the same level. If there is no next row on the same level, it returns -1.
 function GetParent (const Index: Integer): Integer Returns the index of the row that is the parent.
 function GetPrevSibling (const Index: Integer): Integer Returns the index of the previous row on the same level. If there is no previous row on the same level, it returns -1.
 function HasChildren (const Index: Integer): Boolean Allows you to find out if there are child records for the specified row.
 procedure InsertRow (Pos: Integer; Count: Integer = 1) Inserts single row at specified position. This will not add an record to the database.

 procedure LoadFromTextFile (const FileName: String; Separator: Char = ','; Loads text file data into the component. The data will not get into the database. The encoding of the loaded file must be Unicode (UCS-2 Little Endian)

My Visual Database

176 / 222

MultiLineSeparator: Char = '|'; StartRow: Integer = 0)
 procedure MoveRow (FromPos, ToPos: Integer) Moves row from specified position to another one. In this case, no changes are made to the database.
 procedure SaveToHtml (FileName: String; SaveHeaders: boolean = True; AllRows:
boolean = False; CreateStyleSheet: boolean = True; SaveFooter: boolean = False;
SaveCaption: boolean = False)

 Saves the content of the component in an HTML file.

 procedure SaveToTextFile (const FileName: String; Separator: Char = ',';
MultiLineSeparator: Char = '|')

 Saves the contents of the component to a text file. The file encoding used is Unicode (UCS-2 Little Endian).

 procedure ScrollToRow (index: integer) Moves the scroll in the component so that the specified line is visible.
 procedure SelectAll Selects all rows in the component. For the method to work, the Options property must have values goMultiSelect and goSelectFullRow.
 procedure SelectRange (FromRow, ToRow: Integer; Value: Boolean) Selects (or deselects, if Value = False) the specified range of rows.
 procedure SetFocus Gives the input focus to the component.
 procedure SwapRows (FromPos, ToPos: Integer) Swaps positions of two rows.

Events
 Event Description
 OnAfterSort (Sender: TObject; ACol: Integer) Occurs after the column is sorted.
 OnCellClick (Sender: TObject; ACol, ARow: Integer) Occurs when the user clicks on a cell. More info.
 OnCellDoubleClick (Sender: TObject; ACol, ARow: Integer) Occurs when the user double-clicks a cell.
 OnChange (Sender: TObject) Occurs after the component has been populated with data from the database.
 OnClick (Sender: TObject) Occurs when the user clicks the component.
 OnColumnResize (Sender: TObject; ACol: Integer) Occurs when the user resize the column.
 OnDoubleClick (Sender: TObject) Occurs when the user double-clicks the left mouse button when the mouse pointer is over the component.
 OnEnter (Sender: TObject) Occurs when a component receives the input focus.
 OnExit (Sender: TObject) Occurs when the input focus shifts away from one component to another.
 OnExpand (Sender: TObject; ARow: Integer) Occurs when a node expands or collapses.
 OnFooterClick (Sender: TObject; ACol: Integer) Occurs when the user clicks on the footer.
 OnHeaderClick (Sender: TObject; ACol: Integer) Occurs when the user clicks on a column header.
 OnHeaderDoubleClick (Sender: TObject; ACol: Integer) Occurs when the user double-clicks a column header.
 OnInputSelectCell (Sender: TObject; ACol: Integer) Occurs when the user has moved to the input field.
 OnKeyDown (Sender: TObject; var Key: Word; Shift, Alt, Ctrl: boolean) Occurs when a user presses any key while the form has focus.
 OnKeyPress (Sender: TObject; var Key: Char) Occurs when a key is pressed. Note that this procedure handles printable characters only.
 OnKeyUp (Sender: TObject; var Key: Word; Shift, Alt, Ctrl: boolean) Occurs when the user releases a key that was pressed.
 OnLoadProgress (Sender: TObject; ACol, ARow: Integer) Occurs when a text file is loaded into a component using the LoadFromTextFile method
 OnMouseDown (Sender: TObject; MouseLeft, MouseRight, MouseMiddle: boolean; Shift,
Alt, Ctrl: boolean; X, Y: Integer)

 Occurs when the user presses a mouse button with the mouse pointer over a component.

 OnMouseEnter (Sender: TObject) Occurs when the user moves the mouse into a component.
 OnMouseLeave (Sender: TObject) Occurs when the user moves the mouse outside of a component.
 OnMouseMove (Sender: TObject; Shift, Alt, Ctrl: boolean; X, Y: Integer) Occurs when the user moves the mouse pointer while the mouse pointer is over a component.
 OnMouseUp (Sender: TObject; MouseLeft, MouseRight, MouseMiddle: boolean; Shift, Alt,
Ctrl: boolean; X, Y: Integer)

 Occurs when the user releases a mouse button that was pressed with the mouse pointer over a component.

 OnResize (Sender: TObject) Occurs when a component is resized.
 OnRowMove (Sender: TObject; FromPos, ToPos: Integer; var Accept: Boolean) Occurs when the user has moved a row to a new position. Allows you to cancel the move. More info.
 OnSortColumn (Sender: TObject; ACol: Integer; Ascending: Boolean) Occurs before the column is sorted.
 OnDropFiles (Sender: TObject; ArrayOfFiles: array of string; X, Y: Integer) Occurs when user tries to drag and drop a file from explorer to a form. More info.

My Visual Database

177 / 222

Created with the Standard Edition of HelpNDoc: Easily create Qt Help files

property dbPopupMenu: TPopupMenu

Description

Provides access to the component's popup menu.

Allows you to configure the popup menu.

Examples

// hide menu item
Form1.TreeView1.dbPopupMenu.Items[0].Visible := False;

// disable menu item
Form1.TreeView1.dbPopupMenu.Items[0].Enabled := False;

// programmatically click on the first menu item (numbering starts from 0)
Form1.TreeView1.dbPopupMenu.Items[0].Click;

// renaming menu items
procedure Form1_OnShow (Sender: TObject; Action: string);
begin
 Form1.TreeView1.dbPopupMenu.Items[0].Caption := 'Show record 2';
 Form1.TreeView1.dbPopupMenu.Items[1].Caption := 'Delete record 2';
 Form1.TreeView1.dbPopupMenu.Items[3].Caption := 'Copy cell 2';
 Form1.TreeView1.dbPopupMenu.Items[4].Caption := 'Copy 2';
 Form1.TreeView1.dbPopupMenu.Items[5].Caption := 'Copy all 2';
 Form1.TreeView1.dbPopupMenu.Items[7].Caption := 'Find 2';
end;

// adding menu items and submenu
procedure Form1_OnShow (Sender: TObject; Action: string);
var
 SubMenu: TMenuItem;
 MenuItem: TMenuItem;
begin
 SubMenu := TMenuItem.Create (Form1);
 SubMenu.Caption := 'SubMenu';
 MenuItem := TMenuItem.Create (Form1);
 MenuItem.Caption := 'Item';
 MenuItem.OnClick := @MenuClick1;
 Form1.TreeView1.dbPopupMenu.Items.Insert(0, SubMenu);
 Form1.TreeView1.dbPopupMenu.Items[0].Add(MenuItem);
end;

https://www.helpndoc.com/feature-tour

My Visual Database

178 / 222

procedure MenuClick1;
begin
 ShowMessage('Hello from PopupMenu');
end;

Created with the Standard Edition of HelpNDoc: Free CHM Help documentation generator

property Cell[x,y]: TCell

Description

Property to access additional properties of the specified component cell (x - column, y - row).

The class has the following properties

 Property Description
 AsBoolean: Boolean Gets or sets value of item in Boolean type.
 AsDateTime: TDateTime Gets or sets value of item in TDateTime type.
 AsFloat: Double Gets or sets value of item in Double type.
 AsInteger: Integer Gets or sets value of item in Integer type.
 Color: TColor Gets or sets Cell Color.
 Empty: Boolean Determines whether the cell contains any value.
 Hint: string Gets or sets Cell Hint.
 ObjectReference: TObject Gets or sets Reference to TObject object.
 FontStyle: TFontStyles Gets or sets Cell Font Style. Available values: fsBold+fsItalic+fsUnderline+fsStrikeOut
 Tag: Integer Allows you to assign a number for your own needs.
 TextColor: TColor Specifies the font color for the cell.

Example

// changes the color of the first cell
procedure Form1_TreeView1_OnChange (Sender: TObject);
begin
 Form1.TreeView1.Cell[0,0].TextColor := clRed;
end;

Created with the Standard Edition of HelpNDoc: Free help authoring tool

property Columns: TNxColumns

Description

Property for accessing additional column properties and methods.

The class has the following properties

 Properties and methods Description
 procedure Add (Source: TNxCustomColumn): TNxCustomColumn Adds a new column with the specified class.

https://www.helpndoc.com
https://www.helpndoc.com/help-authoring-tool

My Visual Database

179 / 222

 procedure Clear Destroys all columns.
 property Count: Integer Returns the number of columns.
 procedure Delete (index: integer) Deletes the column with the specified index, the column numbering starts from 0.
 function InsertCheckBoxColumn(Pos: Integer): TNxCustomColumn Inserting a column with a CheckBox (TNxCheckBoxColumn) in the specified position, column numbering starts from 0.
 function InsertGraphicColumn(Pos: Integer): TNxCustomColumn Inserting a graphical column (TNxGraphicColumn) in the specified position, the column numbering starts from 0.
 function InsertTreeColumn(Pos: Integer): TNxCustomColumn Inserting a tree column (TNxTreeColumn) in the specified position, the column numbering starts from 0.
 property LastAdded: TNxCustomColumn Returns a reference to the last added column.

Examples

// As a rule, the creation of additional columns should happen in the event of
the OnChange component

// adding a column of the specified class, available classes:
// TNxTextColumn, TNxNumberColumn, TNxDateColumn, TNxTimeColumn,
TNxCheckBoxColumn, TNxListColumn, TNxGraphicColumn, TNxTreeColumn
try
 Form1.TreeView1.Columns.Add(TNxTextColumn);
except
end;
Form1.TreeView1.Columns.LastAdded.Color := clWhite;

// Inserting a column with a CheckBox (TNxCheckBoxColumn) at the specified
position, column numbering starts from 0.
Form1.TreeView1.Columns.InsertCheckBoxColumn(0);

Created with the Standard Edition of HelpNDoc: Full-featured EPub generator

property Columns[i]: TNxCustomColumn

Description

Property to access the properties of the specified column.

The class has the following properties

 Property Type Description
 Alignment TAlignment Sets the alignment of the column content. Available values: taCenter, taRightJustify, taLeftJustify
 Enabled Boolean Determines the availability of the column to the user.
 Footer TColumnFooter The property is responsible for the footer of the component. More info.
 Header TColumnHeader The property is responsible for the headers of the component. More info.
 Options TColumnOptions Additional settings for the column. More info.
 SlideAnchors TAnchors Makes sense when the GridStyles component property = gsSlides. Example.
 SlideBounds TNxSlideBounds Makes sense when the GridStyles component property = gsSlides. Example.
 SlideCaption String Makes sense when the GridStyles component property = gsSlides. Example.
 SlideCaptionLocation TSlideCatpionLocation Makes sense when the GridStyles component property = gsSlides. Example.
 Sorted Boolean Sorts the column.
 SortKind TSortKind Specifies whether the column is sorted in ascending or descending order. Values: skAscending, skDescending

https://www.helpndoc.com/create-epub-ebooks
examples/Slide Grid with picture.zip
examples/Slide Grid with picture.zip
examples/Slide Grid with picture.zip
examples/Slide Grid with picture.zip

My Visual Database

180 / 222

 SortType TSortType Defines the sort type for the column. Values: stAlphabetic, stBoolean, stNumeric, stDate, stIP
 Tag Integer Allows you to assign a number to the column for your own needs.
 TagString String Allows you to assign a string to a column for your own needs.
 VerticalAlignment TVerticalAlignment Sets the vertical alignment of the column content. Available values: vaTop, vaMiddle, vaBottom
 Visible Boolean Determines the visibility of the column in the component.
 Width Integer Sets the width of the column in the component.
 WrapKind TWrapKind Sets the behavior of text that does not fit in the cell for a given column. Values: wkNone, wkEllipsis, wkPathEllipsis, wkWordWrap

Created with the Standard Edition of HelpNDoc: Free help authoring tool

property Footer: TColumnFooter

Description

This property is responsible for the footer of the component.

The class has the following properties

 Property Type Description
 Alignment TAlignment Sets the alignment of the footer content in the column. Available values: taCenter, taRightJustify, taLeftJustify
 Caption String Footer text.
 Color TColor Background Color.
 FormulaKind TFormulaKind Formula for the calculation. Available values: fkNone, fkAverage, fkCount, fkDistinct, fkMaximum, fkMinimum, fkSum, fkCustom
 FormatMask String Allows you to set the format for numbers, text or date/time.
 FormatMaskKind TFormatMaskKind Defines the way the mask in the FormatMask property is handled. Available values: mkText, mkFloat
 TextAfter String Specifies the text before the calculated value.
 TextBefore String Specifies the text after the calculated value.

Example

// format the value in the basement for the columns of the numeric type (REAL,
CURRENCY, INTEGER)
// more details about using formatting
http://docwiki.embarcadero.com/Libraries/XE3/en/System.SysUtils.FormatFloat
procedure Form1_TableGrid1_OnChange (Sender: TObject);
begin
 TNxNumberColumn(Form1.TreeView1.Columns[0]).Footer.TextBefore := Price: ';
 TNxNumberColumn(Form1.TreeView1.Columns[0]).Footer.TextBefore := '$';
 TNxNumberColumn(Form1.TreeView1.Columns[0]).Footer.FormatMaskKind :=
mkFloat;
 TNxNumberColumn(Form1.TreeView1.Columns[0]).Footer.FormatMask :=
'#,##0.00';
end;

Created with the Standard Edition of HelpNDoc: Produce Kindle eBooks easily

property Header: TColumnHeader

https://www.helpndoc.com/help-authoring-tool
http://docwiki.embarcadero.com/Libraries/XE3/en/System.SysUtils.FormatFloat
http://docwiki.embarcadero.com/Libraries/XE3/en/System.MaskUtils.FormatMaskText
http://docwiki.embarcadero.com/Libraries/XE3/en/System.SysUtils.FormatDateTime
http://docwiki.embarcadero.com/Libraries/XE3/en/System.SysUtils.FormatFloat
https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

My Visual Database

181 / 222

Description

This property is responsible for the footer of the component.

The class has the following properties

 Property Type Description
 Alignment TAlignment Sets the alignment of the header in the column. Available values: taCenter, taRightJustify, taLeftJustify
 Caption String Title text.
 Color TColor Header background color. Ignored if component property EnableVisualStyles = True
 DisplayMode TDisplayMode Defines the mode of displaying text and graphics in the header. Available values: dmImageOnly, dmTextAndImage, dmTextOnly
 Glyph TBitmap Allows you to put a bmp image in the header.
 Hint String A tooltip for the header.
 MultiLine Boolean Allows you to use multiple strings in the header.
 Orientation THeaderOrientation Defines the orientation of the header. Available values: hoHorizontal, hoVertical

Example

// place the picture in the header
procedure Form1_TreeView1_OnChange (Sender: TObject);
begin
 Form1.TreeView1.Columns[0].Header.DisplayMode := dmTextAndImage;
 // get the image from Image1 placed on the form, the image must be in bmp
format
 Form1.TreeView1.Columns[
0].Header.Glyph.Assign(Form1.Image1.Picture.Bitmap);
end;

Created with the Standard Edition of HelpNDoc: Produce Kindle eBooks easily

property Options: TColumnOptions

Description

Additional settings for the column.

The set has the following values.

 Value Description
 coAutoSize Not used. For automatic column widths, use the BestFitColumns method.
 coCanClick Determines whether the header of a given column can be clicked to sort.
 coCanInput Makes sense if the TableGrid.Options property has the value goInput. Allows you to enter a value.
 coCanSort Determines whether sorting is executed when you click on the header of a given column.
 coDisableMoving Disables drag-and-drop of columns.
 coEditing Specifies the ability to edit the text in the rows of a given column.
 coEditorAutoSelect Determines whether text is automatically selected when the input cursor is set in a cell of a given column.

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

My Visual Database

182 / 222

 coFixedSize Disables the resizing of this column.
 coShowTextFitHint Determines whether a hint will be shown if the contents of the cell do not fit.

Example

// As a rule, it is necessary to change column settings in the OnChange event
procedure Form1_TreeView1_OnChange (Sender: TObject);
begin
 Form1.TreeView1.Columns[0].Options := Form1.TreeView1.Columns[0].Options -
coCanSort; // disables sorting for the first column
 Form1.TreeView1.Columns[1].Options := Form1.TreeView1.Columns[1].Options +
coFixedSize; // Disables the ability to resize the second column
end;

Created with the Standard Edition of HelpNDoc: Easy to use tool to create HTML Help files and Help web sites

property HorzScrollBar: TNxScrollBar

Description

A property for accessing additional scroll properties and methods.

The class has the following properties and methods

 Properties and methods Description
 property AutoHide: Boolean Determines whether to hide the scrollbar if it is not needed.
 procedure BeginUpdate The method disables the scroll update. After the necessary changes, you need to call the EndUpdate method.
 procedure EndUpdate The method enables a scroll update.
 property Enabled: Boolean Determines the availability of the scroll to the user.
 procedure First The method sets the scroll position to the beginning.
 function IsFirst: Boolean The function returns True if the scroll is at the beginning position.
 function IsLast: Boolean The function returns True if the scroll is at the end position.
 procedure Last The method sets the scroll position to the end.
 property ManualScroll: Boolean Allows you to enable manual scrolling. In this case, the scrolling will need to be implemented using scripts.
 property MoveBy(Distance: Integer) The method moves the scroll position by the specified value. To move the scroll in the opposite direction, use negative values.
 procedure Next The method moves the scroll position to the right (move step can be set in pixels in the SmallChange property, default is 5).
 property PageSize: Integer Returns the number of visible rows.
 procedure PageDown The method moves the scroll position, just like when you press the PageDown keyboard button.
 procedure PageUp The method moves the scroll position, just like when you press the PageUp keyboard button.
 property Position: Integer The property allows you to get or set a scroll position.
 procedure Prior The method moves the scroll position to the left (move step can be set in pixels in the SmallChange property, default is 5).
 property SmallChange: Integer Allows you to set the step for moving the scroll in pixels.
 property Visible: Boolean Determines the visibility of the scroll bar.

https://www.helpndoc.com/help-authoring-tool

My Visual Database

183 / 222

Created with the Standard Edition of HelpNDoc: Full-featured Documentation generator

property VertScrollBar: TNxScrollBar

Description

A property for accessing additional scroll properties and methods.

The class has the following properties and methods

 Properties and methods Description
 property AutoHide: Boolean Determines whether to hide the scrollbar if it is not needed.
 procedure BeginUpdate The method disables the scroll update. After the necessary changes, you need to call the EndUpdate method.
 procedure EndUpdate The method enables a scroll update.
 property Enabled: Boolean Determines the availability of the scroll to the user.
 procedure First The method sets the scroll position to the beginning.
 function IsFirst: Boolean The function returns True if the scroll is at the beginning position.
 function IsLast: Boolean The function returns True if the scroll is at the end position.
 procedure Last The method sets the scroll position to the end.
 property ManualScroll: Boolean Allows you to enable manual scrolling. In this case, the scrolling will need to be implemented using scripts.
 property MoveBy(Distance: Integer) The method moves the scroll position by the specified value. To move the scroll in the opposite direction, use negative values.
 procedure Next The method moves the scroll position to the down (move step can be set in pixels in the SmallChange property, default is 5).
 property PageSize: Integer Returns the number of visible rows.
 procedure PageDown The method moves the scroll position, just like when you press the PageDown keyboard button.
 procedure PageUp The method moves the scroll position, just like when you press the PageUp keyboard button.
 property Position: Integer The property allows you to get or set a scroll position.
 procedure Prior The method moves the scroll position to the up (move step can be set in pixels in the SmallChange property, default is 5).
 property SmallChange: Integer Allows you to set the step for moving the scroll in pixels.
 property Visible: Boolean Determines the visibility of the scroll bar.

Created with the Standard Edition of HelpNDoc: Easily create CHM Help documents

property Options: TGridOptions

Description

Additional component settings.

You can combine the settings using the listed values.

 Value Description
 goArrowKeyExitEditing Exit cell editing by pressing up, down, left, right buttons
 goCanHideColumn The user will be able to hide columns with the mouse.
 goDisableColumnMoving Disables the user to move columns with the mouse.
 goDisableKeys Disables moving between rows with arrows on the keyboard.
 goEscClearEdit When editing a cell, allows you to clear it by pressing Esc.
 goFooter Makes the component's footer visible.
 goGrid Shows horizontal and vertical lines.
 goHeader Shows the headings for the columns.
 goIndicator Shows the indicator of the selected row.

https://www.helpndoc.com
https://www.helpndoc.com/feature-tour

My Visual Database

184 / 222

 goInput Shows the input bar.
 goLockFixedCols Disables moving fixed columns with mouse (FixedCols).
 goMultiSelect Allows you to select multiple records using the Ctrl or Shift key.
 goRowResizing Allows you to change the height of rows with the mouse (goIndicator must also be activated)
 goRowMoving Allows you to move rows with the mouse.
 goSecondClickEdit Editing a cell with a double click of the mouse.
 goSelectFullRow Selects a whole row, otherwise individual cells will be selected.

The default settings are as follows:
goDisableColumnMoving, goHeader, goIndicator, goSecondClickEdit, goSelectFullRow

Example

procedure Form1_Button1_OnClick (Sender: TObject; var Cancel: boolean);
begin
 // disable lines in the component
 Form1.TreeView1.Options := Form1.TreeView1.Options - goGrid;

 // Set the necessary settings for the component
 Form1.TreeView1.Options := goDisableColumnMoving + goGrid + goHeader +
goSecondClickEdit + goSelectFullRow + goMultiSelect;
end;

Created with the Standard Edition of HelpNDoc: Create help files for the Qt Help Framework

property Row[i]: TRow

Description

Property to access additional properties of the specified row.

The class has the following properties

 Property Description
 ChildCount: Integer Number of child elements (makes sense if there is a TNxTreeColumn).
 Expanded: Boolean Whether the row is expanded to show the children (makes sense if there is a TNxTreeColumn).
 HasChildren: Boolean Does the row have children (makes sense if there is a TNxTreeColumn).
 ID: Integer Contains record ID (id field from database).
 ImageIndex: Integer Icon index from TImageList in property TNxTreeColumn(Form1.TreeView1.Columns[0]).Images
 Level: Integer Contains the nesting level (makes sense if there is a TNxTreeColumn).
 ParentRow: TRow Reference to the parent row (makes sense if there is a TNxTreeColumn).
 RowHeight: Integer Gets or sets the height of a Row.
 Selected: Boolean Allows you to know if a row is selected or not.
 Shown: Boolean Allows you to know if the given row is visible (makes sense if there is a TNxTreeColumn).

Example

procedure Form1_Button1_OnClick (Sender: TObject; var Cancel: boolean);

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework

My Visual Database

185 / 222

begin
 // show the ID of the specified row
 ShowMessage(Form1.TreeView1.Row[0].ID);
end;

Created with the Standard Edition of HelpNDoc: Produce Kindle eBooks easily

procedure BestFitColumns(BestFitMode: TBestFitMode = bfCells)

Description

The method allows you to automatically adjust the width of the columns.

As a rule, this method should be called in the event of the OnChange component.

You can specify the following values as a parameter:

bfCells - autosize width by cells contents.
bfBoth - autosize width by contents of cells and column titles.
bfHeader - autosize width by column headers.

Example

procedure Form1_TreeView1_OnChange (Sender: TObject);
begin
 Form1.TreeView1.BestFitColumns(bfBoth);
end;

Created with the Standard Edition of HelpNDoc: Easy CHM and documentation editor

procedure BestFitRow(const Index: Integer)

Description

The method automatically adjusts the height of the row, depending on the contents of the cells in this row.

As a rule, this method must be called in the event of the OnChange component.
Also, you must assign the WrapKind := wkWordWrap property to columns to allow wrap text in cells.

Example

// automatically adjust the height of all rows in the component
procedure Form1_TreeView1_OnChange (Sender: string);
var
 i, c: integer;
begin
 c := Form1.TreeView1.Columns.Count - 1;
 for i := 0 to c do
 begin
 Form1.TreeView1.Columns[i].VerticalAlignment := taAlignTop; // set the
vertical alignment in the cells of the column

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle
https://www.helpndoc.com

My Visual Database

186 / 222

 Form1.TreeView1.Columns[i].WrapKind := wkWordWrap; // enable the
possibility of wrapping the strings in the cells of the column
 end;

 c := Form1.TreeView1.RowCount - 1;
 for i := 0 to c do Form1.TreeView1.BestFitRow(i); // for each row we call
the method for auto height adjustment
end;

// also updates the height of the rows when you resize the columns
procedure Form1_TreeView1_OnColumnResize (Sender: TObject; ACol: Integer);
var
 i, c: integer;
begin
 c := Form1.TreeView1.RowCount - 1;
 for i := 0 to c do Form1.TreeView1.BestFitRow(i); // for each row we call
the method for auto height adjustment
end;

Created with the Standard Edition of HelpNDoc: Generate EPub eBooks with ease

procedure OnCellClick(Sender: TObject; ACol, ARow: Integer)

Description

It is triggered when the user clicked on a cell.

The event contains parameters ACol and ARow, which contain the column number and row number,
respectively, on which the user clicked.

Example

// show the contents of the cell clicked on by the user
procedure Form1_TableGrid1_OnCellClick (Sender: TObject; ACol, ARow: Integer);
begin
 ShowMessage(Form1.TreeView1.Cells[ACol, ARow]);
end;

Created with the Standard Edition of HelpNDoc: Free Web Help generator

Map

Description

Allows you to place an interactive geographical map of Google Maps on the form, with the ability to put
on the map markers, lines and polygons (placing lines and polygons is done using scripts.).

Class: TdbMap

Properties

https://www.helpndoc.com/create-epub-ebooks
https://www.helpndoc.com

My Visual Database

187 / 222

 Property Type Description
 APIKey String Optionally specify an API Key to identify the application with the Google Maps API.
 APIChannel String Optionally specify a Channel ID to identify the application with the Google Maps Premium API. This value is ignored if an API Key value is specified.
 APIClientID String Optionally specify a Client ID to identify the application with the Google Maps Premium API. This value is ignored if an API Key value is specified.
 APISignature String Optionally specify an API Signature to identify the application with the Google Maps Premium API.

 APIClientAuthURL String Optionally specify the authenticated URL as specified on the Google Maps Premium console. The Default URL is: http://127.0.0.1. This value is ignored if an API Key value is
specified.

 CurrentLocation TLocation Contains the coordinates of the user's location. For these coordinates to be available, you must first call the GetCurrentLocation method. It does not work temporarily.
 dbTable String Determines which database table a component belongs to.
 dbFieldLatitude String Specifies in which field of the database table the latitude value of the marker will be stored.
 dbFieldLongitude String Specifies in which field of the database table the longitude value of the marker will be stored.
 DisableMenu Boolean Allows you to disable the map context menu.
 Elevations TElevations Contains the result of calling the GetElevation and GetElevation2 method. Allows to find the height of the ground surface at the specified coordinates.
 FormMarkerName String Specifies the name of the form that will be used when creating/editing the marker.
 LastAddedMarker TMarker Contains a reference to the last added marker using the method: TMarkers.Add (Form1.Map1.Markers.Add)
 LastAddedPolyline TPolylineItem Contains a reference to the last added path using the method: TPolylines.Add (Form1.Map1.Polylines.Add)
 LastAddedPolygon TPolygonItem Contains a reference to the last polygon added using the method: TPolygons.Add (Form1.Map1.Polygons.Add)
 Markers TMarkers Property for working with markers on the map. More info.
 Markers[i] TMarker Property to access existing markers on the map. More info.
 MapOptions TMapOptions Setting up the component. More info.
 Polylines TPolylines Property for working with polylines on the map. More info.
 Polylines[i] TPolylineItem Property to access existing polylines on the map. More info.
 Polygons TPolygons Property for working with polygons on the map. More info.
 Polygons[i] TPolygonItem Property to access existing polygons on the map. More info.
 Enabled Boolean Controls whether the component responds to mouse, keyboard, and timer events.
 Name String The name of the component.
 Visible Boolean Specifies whether the component appears onscreen.
 Left Integer Specifies the horizontal coordinate of the left edge of a component relative to its parent.
 Top Integer Specifies the vertical coordinate of the upper-left of a component relative to its parent.
 Width Integer Specifies the horizontal size of the component in pixels.
 Height Integer Specifies the vertical size of the component in pixels.
 Tag Integer Allows you to assign a number to a component for your own needs.
 TagString String Allows you to assign a string to a component for your own needs.

Methods
 Method Description

 function AddGeoImage (FileName: string; Title: string = ''; Width: Integer = -1;
Height: Integer = -1; ZoomWidth: Integer = -1; ZoomHeight: Integer = -1): TMarker

 This function retrieves the geo coordinates that are found in the exif data of the image file specified in the FileName parameter and adds
a Marker to the map at that location with the image file as its icon. Use the optional Width, Height, ZoomWidth and ZoomHeight
parameters to specify a custom size for the marker icon.

 function AddMapKMLLayer (Url: string; ZoomToBounds: Boolean): Boolean
 This function displays a KML file on the map as defined by the Url parameter. If the ZoomToBounds is true the map is zoomed to the
bounding box of the contents of the layer.

 function ClearPolygons: Boolean Remove all polygons from the map and clear the Polygons collection.

 function ClearPolylines: Boolean Remove all polylines from the map and clear the Polylines collection.
 function CloseMarkerInfoWindowHtml (Id: Integer): Boolean The function closes the information windows of the marker with the given marker-id (Marker.Index).
 procedure CloseAllMarkersInfoWindow Closes the information windows for all markers.
 function CreateMapPolygon (Polygon: TMapPolygon): Boolean Puts the specified polygon on the map.
 function CreateMapPolyline (Polyline: TPolyline): Boolean Puts the specified polyline on the map.

https://developers.google.com/maps/documentation/javascript/get-api-key

My Visual Database

188 / 222

 function DegreesToLonLat (StrLon, StrLat: String; var Lon,Lat: Double): Boolean This function converts degrees to longitude / latitude coordinates. More info.
 function DeleteAllMapKMLLayer: Boolean This function removes all KML layers from the map.
 function DeleteMapKMLLayer (Id: Integer): Boolean The function removes a KML layer from the map.
 function DeleteMapMarker (Id: Integer): Boolean Deletes the specified marker from the map. The marker is not removed from the collection TMarkers
 function DeleteMapPolyline (Id: Integer): Boolean Deletes the specified polyline from the map. The polyline is not removed from the collection TPolylines
 function DeleteMapPolygon (Id: Integer): Boolean Deletes the specified polygon from the map. The polygon is not removed from the collection TPolygons
 function Distance (la1, lo1, la2, lo2: Double): Double Calculates the distance between two coordinates. The result is in kilometers.
 function Focused: Boolean Determines whether the control has input focus.
 function GetCurrentLocation: Boolean Sets the CurrentLocation.Latitude and CurrentLocation.Longitude to the coordinates of the current location. It does not work temporarily.

 function GetMapBounds: Boolean
 This function retrieves the bounds coordinates of the currently displayed map. The bounds are returned via the OnBoundsRetrieved event.
Doesn't work in the current version.

 function GetElevation (Latitude, Longitude: Double): Boolean
 Retrieves the elevation data for a single latitude and longitude coordinate. The data is added to the Elevations collection. Returns true if
the request succeeded, false otherwise. Maps Elevation API activation is required. More info.

 function GetElevation2 (Path: TPath; ResultCount: Integer = 2): Boolean

 Retrieves the elevation data for a Path that contains latitude and longitude coordinates. The start location (first coordinate in Path) and
end location (last coordinate in path) are used to form a straight line. The elevation data is retrieved along the straight path at specified
intervals. The number of intervals is indicated by the ResultCount parameter. The data is added to the Elevations collection. Returns true if
the request succeeded, false otherwise. Maps Elevation API activation is required. More info.

 function GetModifiedMapPolyline (Polyline: TPolyline):Boolean
 This function retrieves modified coordinates from a Polyline on the map and updates the Polyline.Path values. Typically used when the user
modifies lines on the map with the mouse and the result of these changes must be applied.

 function GetModifiedMapPolygon (Polygon: TMapPolygon):Boolean
 This function retrieves modified coordinates from a Polygon on the map and updates the Polygon values. (This includes the Path values
for a Polygon of type ptPath, the Center and Radius values for Polygon of type ptCircle and the Bounds values for a Polygon of type
ptRectangle) Typically used when the user modifies polygons on the map with the mouse and the result of these changes must be applied.

 function GetPolygonAreaSqMeters (APolygonId: Integer): string Returns the area in square meters for the specified polygon.
 function LoadGeoJSONPolyline (AFilename: string; AColor: TColor = clBlue;
Opacity: Integer = 255; AWidth: Integer = 2; Zoom: Boolean = True; HoverColor:
TColor = clBlue): string

 This function loads coordinates from a GEOJSON file and displays it on the map as a Polyline or Polylines. Optionally set the Color,
Opacity, Width, HoverColor of the Polyline(s). Optionally set Zoom to true to automatically zoom the map to the bounds of the Polyline(s).
More info.

 function LoadGeoJSONPolygon (AFilename: string; BorderColor: TColor =
clBlue; Opacity: Integer = 255; BackgroundColor: TColor = clBlue;
BackgroundOpacity: Integer = 100; AWidth: Integer = 2; Zoom: Boolean = True;
HoverBorderColor: TColor = clBlue; HoverBackgroundColor: TColor = clBlue): string

 This function loads coordinates from a GEOJSON file and displays it on the map as a Polygon or Polygons. Optionally set the
BorderColor, Opacity, BackgroundColor, BackgroundOpacity, Width, HoverBorderColor, HoverBackgroundColor of the Polygon(s).
Optionally set Zoom to true to automatically zoom the map to the bounds of the Polygon(s). More info.

 function LoadGPSRoute (AFilename: string; AColor: TColor = clRed; AWidth:
integer = 2; ZoomToRoute: Boolean = False): string

 This function loads a GPS route from a GPX file and displays it on the map as a Polyline. More info about GPX file.

 procedure LoadMarkersFromPoi (PoiFile: string; MarkerColor: TMarkerIconColor
= icDefault)

 This functions loads a set of coordinates from the POI file specified in PoiFile and automatically adds them to the map as markers.
Optionally the color of the markers can be specified with MarkerColor.

 function LonLatToXY (Lon, Lat: Double; var X, Y: Integer): Boolean
 This function converts longitude / latitude coordinates to XY coordinates. Returns the X and Y pixel coordinates in the control window of
the latitude and longitude coordinates.

 function MapPanTo (Latitude,Longitude:Double): Boolean
 This function performs a pan to a location set by latitude and longitude coordinates. This is useful to set a certain position in the center of
the control canvas.

 function MapZoomTo (Bounds: TBounds): Boolean This function performs a zoom to fit the map inside the given bounds coordinates. More info.
 function MapPanBy (X,Y: Integer): Boolean The function moves the map horizontally (x) and vertical (y) pixels.

 function OpenMarkerInfoWindowHtml (Id: Integer; HtmlText:String): Boolean
 The function opens the marker info window for the marker with selected marker-id (Marker.Index). Extra information can be passed via the
HtmlText string. More info.

 procedure SaveMarkersToPoi (PoiFile: string) This functions saves the coordinates of all markers to the POI file specified in PoiFile.

 function ScreenShot (ImgType: TImgType): TGraphic
 The function takes a screenshot of the actual map canvas. This screenshot is taken in the chosen imagetype: itJPeg, itBitmap or itPng.
More info.

 procedure SetFocus Gives the input focus to the component.
 procedure SwitchToStreetView Switches the map to the panoramic street view.
 procedure SwitchToMap Exit the panoramic street view mode.
 function UpdateMapMarkers: Boolean Updates all markers on the map.
 function UpdateMapMarker (Marker: TMarker):Boolean Updates the specified marker on the map.

 function UpdateMapPolygon (Polygon: TMapPolygon): Boolean
 Updates the specified polygon on the map. It should be called, for example, when you have updated the coordinates of a polygon with a
script.

My Visual Database

189 / 222

 function UpdateMapPolyline (Polyline: TPolyline): Boolean
 Updates the specified polyline on the map. It should be called when, for example, you have updated the coordinates of the polyline with a
script.

 function XYToLonLat (X, Y: integer; var Lon, Lat: double): Boolean
 This function converts XY coordinates to longitude / latitude coordinates. Returns the latitude and longitude coordinates of the X and Y
pixel coordinates in the control window.

Events
 Event Description
 OnMapClick (Sender: TObject; Latitude, Longitude: Double; X, Y: Integer;
MouseLeft, MouseRight, MouseMiddle: Boolean)

 Occurs when the map is clicked. Returns the latitude and longitude coordinates of that position, the X and Y values indicate the pixel
coordinates in the control window, button parameter returns what button was clicked on the mouse.

 OnMapDblClick (Sender: TObject; Latitude, Longitude: Double; X, Y: Integer)
 Occurs when the user double-clicks the left mouse button when the mouse pointer is over the component. Returns the latitude and
longitude coordinates of the mouse cursor position, the X and Y values indicate the pixel position of the mouse cursor in the control
window.

 OnMapMouseEnter (Sender: TObject; Latitude, Longitude: Double; X, Y: Integer) Occurs when the user moves the mouse into a component. Returns the latitude and longitude coordinates of the mouse cursor position,
the X and Y values indicate the pixel position of the mouse cursor in the control window.

 OnMapMouseExit (Sender: TObject; Latitude, Longitude: Double; X, Y: Integer) Occurs when the user moves the mouse outside of a component. Returns the latitude and longitude coordinates of the mouse cursor
position, the X and Y values indicate the pixel position of the mouse cursor in the control window.

 OnMapMouseMove (Sender: TObject; Latitude, Longitude: Double; X, Y: Integer) Occurs when the user moves the mouse pointer while the mouse pointer is over a component. Returns the latitude and longitude
coordinates of the mouse cursor position, the X and Y values indicate the pixel position of the mouse cursor in the control window.

 OnMapMove (Sender: TObject; Latitude, Longitude: Double; X, Y: Integer) Occurs when the entire map is moved (left mouse and drag) within the control. Returns the latitude and longitude coordinates of the
mouse cursor position, the X and Y values indicate the pixel position of the mouse cursor in the control window.

 OnMapMoveEnd (Sender: TObject; Latitude, Longitude: Double; X, Y: Integer) Occurs at the end of an entire map move (left mouse and drag) within the control. Returns the latitude and longitude coordinates of that
position, the X and Y values indicate the pixel position in the control window.

 OnMapMoveStart (Sender: TObject; Latitude, Longitude: Double; X, Y: Integer) Occurs at the start of an entire map move (left mouse and drag) within the control. Returns the latitude and longitude coordinates of that
position, the X and Y values indicate the pixel position in the control window.

 OnMapTypeChange (Sender: TObject; NewMapType: TMapType) Occurs when the map type is changed. This event returns the selected map type.
 OnMapZoomChange (Sender: TObject; NewLevel: Integer) Occurs when the zoom level is changed via any type of the zoom control. The event returns the selected zoom level.
 OnMarkerClick (Sender: TObject; MarkerTitle: string; IdMarker: Integer; Latitude,
Longitude: Double; MouseLeft, MouseRight, MouseMiddle: Boolean)

 Occurs when a marker is clicked. Returns the marker title, the marker id, latitude and longitude coordinates defined for the marker, and
what button has been clicked on the mouse.

 OnMarkerDblClick (Sender: TObject; MarkerTitle: string; IdMarker: Integer;
Latitude, Longitude: Double)

 Occurs when a marker is double-clicked. The event returns the marker title, the marker id, latitude and longitude coordinates of the
selected marker.

 OnMarkerDrag (Sender: TObject; MarkerTitle: string; IdMarker: Integer; Latitude,
Longitude: Double)

 Occurs when a marker is dragged around the control. The event returns the marker title, the marker id, latitude and longitude
coordinates of the selected marker.

 OnMarkerDragEnd (Sender: TObject; MarkerTitle: string; IdMarker: Integer;
Latitude, Longitude: Double)

 Occurs at the end of when a marker is dragged in the control. The event returns the marker title, the marker id, latitude and longitude
coordinates of the selected marker.

 OnMarkerDragStart (Sender: TObject; MarkerTitle: string; IdMarker: Integer;
Latitude, Longitude: Double)

 Occurs at the start of when a marker is dragged in the control. The event returns the marker title, marker id, latitude and longitude
coordinates of the selected marker.

 OnMarkerInfoWindowCloseClick (Sender: TObject; IdMarker: Integer) Occurs when the info window is closed. The event returns the marker id.
 OnMarkerMouseDown (Sender: TObject; MarkerTitle: string; IdMarker: Integer;
Latitude, Longitude: Double)

 Occurs when the mouse cursor is over a marker and a mouse button is pressed. The event returns the marker title, marker id, latitude
and longitude coordinates of the selected marker.

 OnMarkerMouseEnter (Sender: TObject; MarkerTitle: string; IdMarker: Integer;
Latitude, Longitude: Double)

 Occurs when the mouse cursor enters a marker. The event returns the marker title, marker id, latitude and longitude coordinates for that
position.

 OnMarkerMouseExit (Sender: TObject; MarkerTitle: string; IdMarker: Integer;
Latitude, Longitude: Double)

 Occurs when the mouse cursor leaves the marker. The event returns the latitude and longitude coordinates of that position the X and Y
values indicate the pixel position in the control window.

 OnMarkerMouseUp (Sender: TObject; MarkerTitle: string; IdMarker: Integer;
Latitude, Longitude: Double)

 Occurs when the mouse cursor is over a marker and a mouse button is released. The event returns the marker title, marker id, latitude
and longitude coordinates of the selected marker.

 OnAfterAddMarker (Sender: TObject; IdMarker: Integer) Occurs after adding a marker. The event will not occurs if the marker was added using a script.

 OnBeforeDeleteMarker (Sender: TObject; IdMarker: Integer; var Cancel: Boolean) Occurs before the marker is deleted, with the ability to prevent the deletion. The event will not occur if the marker is deleted using a

My Visual Database

190 / 222

script.
 OnPolygonClick (Sender: TObject; IdPolygon: Integer; MouseLeft, MouseRight,
MouseMiddle: Boolean)

 Occurs when a polygon is clicked. Returns the polygon id and what button has been clicked on the mouse.

 OnPolygonDblClick (Sender: TObject; IdPolygon: Integer) Occurs when a polygon is double-clicked. The event returns the polygon id.
 OnPolygonMouseDown (Sender: TObject; IdPolygon: Integer) Occurs when the mouse cursor is over a polygon and a mouse button is pressed. The event returns the polygon id.
 OnPolygonMouseEnter (Sender: TObject; IdPolygon: Integer) Occurs when the mouse cursor enters a polygon. The event returns the polygon id.
 OnPolygonMouseExit (Sender: TObject; IdPolygon: Integer) Occurs when the mouse cursor leaves a polygon. The event returns polygon id.
 OnPolygonMouseUp (Sender: TObject; IdPolygon: Integer) Occurs when the mouse cursor is over a polygon and a mouse button is released. The event returns the polygon id.

 OnPolygonChanged (Sender: TObject; IdPolygon: Integer) Occurs when a polygon has been modified on the map. The event returns the polygon id. The modified coordinates can be retrieved
with the GetModifiedPoygon method.

 OnPolylineClick (Sender: TObject; IdPolyline: Integer; MouseLeft, MouseRight,
MouseMiddle: Boolean)

 Occurs when a polyline is clicked. Returns the polyline id and what button has been clicked on the mouse.

 OnPolylineDblClick (Sender: TObject; IdPolyline: Integer) Occurs when a polyline is double-clicked. The event returns the polyline id.
 OnPolylineMouseDown (Sender: TObject; IdPolyline: Integer) Occurs when the mouse cursor is over a polyline and a mouse button is pressed. The event returns the polyline id.
 OnPolylineMouseEnter (Sender: TObject; IdPolyline: Integer) Occurs when the mouse cursor enters a polyline. The event returns the polyline id.
 OnPolylineMouseExit (Sender: TObject; IdPolyline: Integer) Occurs when the mouse cursor leaves a polyline. The event returns polyline id.
 OnPolylineMouseUp (Sender: TObject; IdPolyline: Integer) Occurs when the mouse cursor is over a polyline and a mouse button is released. The event returns the polyline id.

 OnPolylineChanged (Sender: TObject; IdPolyline: Integer) Occurs when a polyline has been modified on the map. The event returns the polyline id. The modified coordinates can be retrieved with
the GetModifiedPoyline method.

 OnStreetViewChange (Sender: TObject; Heading, Pitch, Zoom: Integer) Occurs when the Point Of View is changed while StreetView mode is active. Returns the Heading, Pitch and Zoom values.

 OnStreetViewMove (Sender: TObject; Latitude, Longitude: Double; X, Y: Integer) Occurs when the geographic position is changed while StreetView mode is active. Returns the latitude and longitude coordinates of that
position, the X and Y values indicate the pixel position in the control window.

 OnWebGMapsError (Sender: TObject; ErrorType: TErrorType) Occurs when an error is received. This event returns the error type.

Created with the Standard Edition of HelpNDoc: Easily create Help documents

type TMarkerIconColor

Description

Type to define the color of the marker.

Available values:
 Value Color
 icDefault Default
 icBlue Blue
 icGreen Green
 icRedicPurple Purple

Created with the Standard Edition of HelpNDoc: Easily create Help documents

type TErrorType

Description

Type for determining an error when working with a component.

Available values:
 Value
 etGMapsProblem

https://www.helpndoc.com/feature-tour
https://www.helpndoc.com/feature-tour

My Visual Database

191 / 222

 etScreenshotProblem
 etJavascriptError
 etNotValidMarker
 etStreetViewUnknownError
 etStreetViewNoResults
 etInvalidWaypoint

Created with the Standard Edition of HelpNDoc: Free help authoring environment

class TBounds

Description

The class is designed to indicate the northeast and southwest coordinates. The class is used to gets or
sets a rectangular area on the map.

Class Properties
 Property
 NorthEast.Latitude: Double
 NorthEast.Longitude: Double
 SouthWest.Latitude: Double
 SouthWest.Longitude: Double

Example

// showing Paris on the map
procedure Form1_Button1_OnClick (Sender: TObject; var Cancel: boolean);
var
 Bounds: TBounds;
begin
 Bounds := TBounds.Create;
 Bounds.NorthEast.Latitude := 48.900868;
 Bounds.NorthEast.Longitude := 2.396142;
 Bounds.SouthWest.Latitude := 48.817004;
 Bounds.SouthWest.Longitude := 2.244114;
 Form1.Map1.MapZoomTo(Bounds);
 Bounds.Free;
end;

Created with the Standard Edition of HelpNDoc: Free help authoring tool

property Markers: TMakers

https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/help-authoring-tool

My Visual Database

192 / 222

Description

Property for working with markers on the map. Allows you to create/modify/delete markers on the map.

 Methods and properties Description
 function Add(Latitude, Longitude: Double): TMarker Creates a new marker on the map.
 function Bounds: TBounds Returns the coordinates of the rectangular area in which all markers are located.
 procedure Clear Removes all markers on the map and from the collection (TMarkers).
 property Count: Integer Returns the number of markers in the collection (TMarkers).
 procedure Delete(Index: Integer) Removes the specified marker from the map and from the collection of markers (TMarkers).
 property Items[i]: TMarker Returns the specified marker.

Example

//Create a marker on the map
var
 Marker: TMarker;
 i: integer;
 id: integer;
begin
 // Create a marker on the map with specified coordinates
 Marker := Form1.Map1.Markers.Add(48.858137, 2.294476);

 // Set the map zoom to fit all existing markers
 Form1.Map1.MapZoomTo(Form1.Map1.Markers.Bounds);

Created with the Standard Edition of HelpNDoc: Easily create EPub books

property Markers[i]: TMarker

Description

Property to access existing markers on the map. Allows you to change/delete markers on the map.

 Property Type Description
 Clickable Boolean When set to true, enables clicking on the marker. Clicking opens an extra info window on the Google Maps containing the text set by Marker.Title.
 Data String Store extra data associated with the marker.
 dbID Integer Allows to find out the marker id in the database (sense when more than 1 marker can be placed on the map).
 Draggable Boolean When set to true, the marker can be moved around the map when dragged.

 Icon String Allows the use of an image as a marker. A local path to an image file or an url to a remote image file are both allowed. The local path must be in the
format: File://C:/folder/iconname.png

 IconColor TMarkerIconColor Allows changing the color of the default marker icon to one of the available pre-defined colors: icDefault, icBlue, icGreen, icRed and icPurple

 IconWidth Integer Specify a custom width value in pixels for the marker icon. Can only be used when the Icon property is assigned. If this value is not specified the icon is
displayed in its full size.

 IconHeight Integer Specify a custom height value in pixels for the marker icon. Can only be used when the Icon property is assigned. If this value is not specified the icon is

https://www.helpndoc.com/feature-tour

My Visual Database

193 / 222

displayed in its full size.
 Index Integer Allows you to get the index of a marker on the map.
 Latitude Double Sets the latitude value of the marker on the map.
 Longitude Double Sets the longitude value of the marker on the map.
 MapLabel TMapLabel Allows the use of a HTML label displayed on top of the marker. The label is automatically resized based on the Text value. More info.
 Tag Integer Allows you to assign a number to a component for your own needs.
 Text String The text that will be displayed over the marker.
 Title String Text that will be visible as a tooltip for the marker.
 Visible Boolean Determines the visibility of the marker on the map.

Example

//display the coordinates of all markers on the map
procedure Form1_Button1_OnClick (Sender: TObject; var Cancel: boolean);
var
 i, c: integer;
 lat, lng: Double;
begin
 c := Form1.Map1.Markers.Count-1;
 for i := 0 to c do
 begin
 lat := Form1.Map1.Markers[i].Latitude;
 lng := Form1.Map1.Markers[i].Longitude;
 ShowMessage(Coordinates: ' + FloatToStr(lat)+', '+ FloatToStr(lng));
 end;
end;

Created with the Standard Edition of HelpNDoc: Produce online help for Qt applications

property MapLabel: TMapLabel

Description

The class is designed to customize the label for the marker.

Class Properties
 Property Type Description
 BorderColor TColor The border color of the label.
 Color TColor The color of the label.
 Font TFont The font for the label text.
 Margin Integer The margin in pixels between the label border and the label text.

 OffsetLeft Integer The left offset of the label relative to the marker coordinates. This is a percentage value. For
example the value 0 will center align the label, the value 50 will right align the label.

 OffsetTop Integer The top offset of the label relative to the marker coordinates. This is a pixel value. With a default
Font.Size and the default Marker the label is displayed on top of the Marker.

 Text String The text displayed in the label. If this value is empty, no label is displayed. You can use html tags.

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework

My Visual Database

194 / 222

Created with the Standard Edition of HelpNDoc: Easily create PDF Help documents

property Polylines: TPolylines

Description

Property for working with polylines on the map. Allows you to create/modify/delete polylines on the map.

 Methods and properties Description
 function Add: TPolylineItem Creates a new polyline object.
 function Bounds: TBounds Returns the coordinates of the rectangular area in which all the polylines are located.

 procedure Clear Removes all polylines from the collection. It will not remove polylines from the map. Use
ClearPolylines method to remove polylines simultaneously from the map and TPolylines collection.

 property Count: Integer Returns the number of polylines in the collection (TPolylines).

 procedure Delete(Index: Integer) Deletes the specified polyline from the collection (TPolylines). To remove a polyline from the map use
DeleteMapPolyline method.

 property Items[i]: TPolylineItem Returns the specified polyline.

Example

procedure Form1_Button1_OnClick (Sender: TObject; var Cancel: boolean);
var
 PolylineItem: TPolylineItem;
begin
 PolylineItem := Form1.Map1.Polylines.Add; // Create an object for a
polyline
 PolylineItem.Polyline.Width := 2;
 PolylineItem.Polyline.Path.Add(50, 2); // add a starting point
 PolylineItem.Polyline.Path.Add(52, 4); // add a line
 PolylineItem.Polyline.Path.Add(50, 4); // add a line

 Form1.Map1.CreateMapPolyline(PolylineItem.Polyline); // display the
created polyline on the map
 Form1.Map1.MapZoomTo(PolylineItem.Polyline.PathBounds); // set the map
zoom to fit the created polyline
end;

Created with the Standard Edition of HelpNDoc: Easily create PDF Help documents

property Polylines[i]: TPolylineItem

Description

Property for accessing existing polylines on the map. Allows you to change/delete polylines on the map.

 Свойства Описание
 property Clickable: Boolean When set to true, enables clicking on the polyline. If the value is False, then the OnPolylineClick event will not be triggered.
 property Color: TColor The color of the polyline.
 property Editable: Boolean When set to true, the polyline can be edited.

https://www.helpndoc.com/feature-tour
https://www.helpndoc.com/feature-tour

My Visual Database

195 / 222

 property Geodesic: Boolean When set to true, each edge is rendered as a geodesic. When set to false, render each edge as a straight line.
 property HoverColor: TColor The color of the polyline when hovered.
 property Opacity: Integer The opacity of the polyline. (values 1-100).
 property Path: TPath The ordered sequence of coordinates of the polyline.
 property Path[i]: TPathItem Returns a point with coordinates by its index.
 property PathBounds: TBounds Returns the coordinates of the rectangular area where the given polyline is located.
 property Tag: Integer Allows you to assign a number to a component for your own needs.
 property TagString: string Allows you to assign a string to a component for your own needs.
 property TagObject: TObject The object associated with the polyline
 property Width: Integer The width of the polyline in pixels.
 property Visible: Boolean When set to true, the polyline is shown on the map.
 property Zindex: Integer The zIndex compared to other elements on the map.

Example

// move all polylines by 0.001 latitude and longitude
procedure Form1_Button1_OnClick (Sender: TObject; var Cancel: boolean);
var
 iLine, iPath, cLine, cPath: integer;
begin
 cLine := Form1.Map1.Polylines.Count-1;
 for iLine := 0 to cLine do
 begin
 cPath := Form1.Map1.Polylines[iLine].Polyline.Path.Count-1;
 for iPath := 0 to cPath do
 begin
 Form1.Map1.Polylines[iLine].Polyline.Path[iPath].Latitude :=
Form1.Map1.Polylines[iLine].Polyline.Path[iPath].Latitude + 0.001;
 Form1.Map1.Polylines[iLine].Polyline.Path[iPath].Longitude :=
Form1.Map1.Polylines[iLine].Polyline.Path[iPath].Longitude + 0.001;
 end;
 Form1.Map1.UpdateMapPolyline(Form1.Map1.Polylines[iLine].Polyline); //
update the polyline on the map
 end;
end;

Created with the Standard Edition of HelpNDoc: Free PDF documentation generator

property Path: TPath

Description

Property for working with individual points that make up a polyline. Allows you to create/modify/delete
polyline points.

 Methods and properties Description
 function Add (Latitude, Longitude: double): TPathItem Adds a new point for the polyline.

https://www.helpndoc.com

My Visual Database

196 / 222

 procedure Clear Deletes all points in the given polyline.
 property Count: Integer Returns the number of points in the given polyline.
 procedure Delete(Index: Integer) Deletes the specified point on the given polyline.
 property Items[i]: TPathItem Returns the specified point in the given polyline.

Created with the Standard Edition of HelpNDoc: Easily create EBooks

property Path[i]: TPathItem

Description

Contains the geographical coordinates of the point.

 Property Description
 property Latitude: Double Широта точки.
 property Longitude: Double Долгота точки.

Created with the Standard Edition of HelpNDoc: Easy EPub and documentation editor

property Polygons: TPolygons

Description

Property for working with polygons on the map. Allows you to create/modify/delete polygons on the map.

 Methods and properties Description
 function Add: TPolygonItem Creates a new polygon object.
 procedure Bounds: TBounds Contains the coordinates of the rectangular area in which all polygons are located.

 procedure Clear Removes all polygons from the collection. The polygons from the map will not be removed. Use ClearPolygons method to remove polygons simultaneously from
the map and TPolygons collection.

 property Count: Integer Returns the number of polygons in the collection (TPolygons).

 procedure Delete(Index: Integer) Removes the specified polygon from the collection (TPolygons). At that, the polygon will not be deleted from the map. To remove a polygon from the map, use
DeleteMapPolygon method.

 property Items[i]: TPolygonItem Returns the specified polygon.

Example

procedure Form1_Button1_OnClick (Sender: TObject; var Cancel: boolean);
var
 PolygonItem: TPolygonItem;

https://www.helpndoc.com/feature-tour
https://www.helpndoc.com

My Visual Database

197 / 222

begin
 // Circle
 PolygonItem := Form1.Map1.Polygons.Add;
 PolygonItem.Polygon.BackgroundOpacity := 50;
 PolygonItem.Polygon.BorderWidth := 2;
 // Setting up a polygon with the Circle type
 PolygonItem.Polygon.PolygonType := ptCircle;
 PolygonItem.Polygon.Radius := 10000;
 PolygonItem.Polygon.Center.Latitude := 50;
 PolygonItem.Polygon.Center.Longitude := 2;
 Form1.Map1.CreateMapPolygon(PolygonItem.Polygon);

 // Rectangle
 PolygonItem := Form1.Map1.Polygons.Add;
 PolygonItem.Polygon.BackgroundOpacity := 50;
 PolygonItem.Polygon.BorderWidth := 2;
 //Setting up a polygon with Rectangle type
 PolygonItem.Polygon.PolygonType := ptRectangle;
 PolygonItem.Polygon.Bounds.NorthEast.Latitude := 52;
 PolygonItem.Polygon.Bounds.NorthEast.Longitude := 4;
 PolygonItem.Polygon.Bounds.SouthWest.Latitude := 50;
 PolygonItem.Polygon.Bounds.SouthWest.Longitude := 3;
 Form1.Map1.CreateMapPolygon(PolygonItem.Polygon);

 // Polygons are based on a list of longitude and latitude coordinates
 PolygonItem := Form1.Map1.Polygons.Add;
 PolygonItem.Polygon.BackgroundOpacity := 50;
 PolygonItem.Polygon.BorderWidth := 2;
 //Setting up a polygon
 PolygonItem.Polygon.PolygonType := ptPath;
 PolygonItem.Polygon.Path.Add(50, 2);
 PolygonItem.Polygon.Path.Add(52, 4);
 PolygonItem.Polygon.Path.Add(50, 4);
 Form1.Map1.CreateMapPolygon(PolygonItem.Polygon);

 Form1.Map1.MapZoomTo(Form1.Map1.Polygons.Bounds); // Set the map zoom to
fit all existing polygons
end;

Created with the Standard Edition of HelpNDoc: Qt Help documentation made easy

property Polygons[i]: TPolygonItem

Description

Property for accessing existing polygons on the map. Allows you to change/delete polygons on the map.

 Methods and properties Описание
 property BackgroundColor: TColor The color of the polygon.
 property BackgroundOpacity: Integer The opacity of the polygon. (values: 1-100).
 property BorderColor: TColor The border color of the polygon.
 property BorderOpacity: Integer The border opacity of the polygon. (values: 1-100).
 property BorderWidth: Integer The width of the polygon border in pixels.
 property Bounds: TBounds Sets the bounds of a polygon when PolygonType is set to ptRectangle.
 property Center: TLocation Sets the latitude/longitude of the center point of the circle when PolygonType is set to ptCircle.
 property Clickable: Boolean When set to true, enables clicking on the polygon. If the value is False, then the OnPolygonClick event will not be triggered.

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework

My Visual Database

198 / 222

 property Editable: Boolean When set to true, the polygon can be edited.
 property Geodesic: Boolean When set to true, each edge is rendered as a geodesic. When set to false, render each edge as a straight line.
 property HoverBackgroundColor: TColor The color of the polygon when hovered.
 property HoverBorderColor: TColor The border color of the polygon when hovered.
 property Path: TPath The ordered sequence of coordinates of the polygon that forms a closed loop (when PolygonType is set to ptPath). Paths are closed automatically.
 property Path[i]: TPathItem Returns the coordinates of a point by its index. Makes sense if the polygon is PolygonType (PolygonType = ptPath).
 property PathBounds: TBounds Returns the coordinates of the rectangular area in which this polygon is located.
 property PolygonType: TPolygonType Sets the type of polygon to be rendered. Available values: ptCircle, ptRectangle, ptPath
 property Radius: Integer The radius of the polygon in meters. (When PolygonType is set to ptCircle)
 property Tag: Integer Allows you to assign a number to a component for your own needs.

 property TagString: string The text associated with the polygon (optional). The appearance of the hint can be configured with the PolygonLabel properties. If PolygonLabel.Visible
is set to true, this value will be displayed as a hint when hovering the polygon on the map.

 property TagObject: TObject Allows you to assign an object to a polygon for your own use.
 property Visible: Boolean When set to true, the polygon is shown on the map.
 property Zindex: Integer The zIndex compared to other elements on the map.

Example

procedure Form1_Button1_OnClick (Sender: TObject; var Cancel: boolean);
var
 PolygonItem: TPolygonItem;
begin
 // Circle
 PolygonItem := Form1.Map1.Polygons.Add;
 PolygonItem.Polygon.BackgroundOpacity := 50;
 PolygonItem.Polygon.BorderWidth := 2;
 // Setting up a polygon with the Circle type
 PolygonItem.Polygon.PolygonType := ptCircle;
 PolygonItem.Polygon.Radius := 10000;
 PolygonItem.Polygon.Center.Latitude := 50;
 PolygonItem.Polygon.Center.Longitude := 2;
 Form1.Map1.CreateMapPolygon(PolygonItem.Polygon);

 // Rectangle
 PolygonItem := Form1.Map1.Polygons.Add;
 PolygonItem.Polygon.BackgroundOpacity := 50;
 PolygonItem.Polygon.BorderWidth := 2;
 //Setting up a polygon with Rectangle type
 PolygonItem.Polygon.PolygonType := ptRectangle;
 PolygonItem.Polygon.Bounds.NorthEast.Latitude := 52;
 PolygonItem.Polygon.Bounds.NorthEast.Longitude := 4;
 PolygonItem.Polygon.Bounds.SouthWest.Latitude := 50;
 PolygonItem.Polygon.Bounds.SouthWest.Longitude := 3;
 Form1.Map1.CreateMapPolygon(PolygonItem.Polygon);

 // Polygons are based on a list of longitude and latitude coordinates
 PolygonItem := Form1.Map1.Polygons.Add;
 PolygonItem.Polygon.BackgroundOpacity := 50;
 PolygonItem.Polygon.BorderWidth := 2;
 //Setting up a polygon
 PolygonItem.Polygon.PolygonType := ptPath;
 PolygonItem.Polygon.Path.Add(50, 2);
 PolygonItem.Polygon.Path.Add(52, 4);

My Visual Database

199 / 222

 PolygonItem.Polygon.Path.Add(50, 4);
 Form1.Map1.CreateMapPolygon(PolygonItem.Polygon);

 Form1.Map1.MapZoomTo(Form1.Map1.Polygons.Bounds); // Set the map zoom to
fit all existing polygons
end;

Created with the Standard Edition of HelpNDoc: Generate EPub eBooks with ease

property MapOptions: TMapOptions

Description

Setting up the component. The class has the following properties

 Property Description
 property DefaultToCurrentLocation: Boolean Sets the current location as the default position when Launch is called. DefaultLatitude and DefaultLongitude are ignored if set to true.
 property DefaultLatitude: Double Sets the latitude value for the default position when Launch is called.
 property DefaultLongitude: Double Sets the longitude value for the default position when Launch is called.
 property DisableDoubleClickZoom: Boolean When set to true, disables zoom functions when double-clicking.
 property DisablePOI: Boolean When set to true, disable display of the points of interest on the map.

 property DisableTilt: Boolean Disable the auto-tilted view on satellite maptype. Note: tilted view is only available at specific locations for specific zoom levels, this is a limitation of
the Google Maps API.

 property Draggable: Boolean When set to true, the entire map can be moved around in the control.
 property EnableKeyboard: Boolean When set to true, enables the use of the keyboard for controlling panning in the map (or in street view mode).

 property Language: TLanguageName

 Defines the language of the map. Available values: lnDefault, lnArabic, lnBasque, lnBulgarian, lnBengali, lnCatalan, lnCzech, lnDanish, lnGerman, lnGreek,
lnEnglish, lnEnglish_Australian, lnEnglish_GreatBritain, lnSpanish, lnFarsi, lnFinnish, lnFilipino, lnFrench, lnGalician, lnGujarati, lnHindi, lnCroatian,
lnHungarian, lnIndonesian, lnItalian, lnHebrew, lnJapanese, lnKannada, lnKorean, lnLithuanian, lnLatvian, lnMalayalam, lnMarathi, lnDutch, lnNorwegian,
lnPolish, lnPortuguese, lnPortuguese_Brazil, lnPortuguese_Portugal, lnRomanian, lnRussian, lnSlovak, lnSlovenian, lnSerbian, lnSwedish, lnTagalog,
lnTamil, lnTelugu, lnThai, lnTurkish, lnUkrainian, lnVietnamese, lnChinese_Simplified, lnChinese_Tradtional

 property MapType: TMapType Sets the type of map. Available values: mtDefault, mtSatellite, mtHybrid, mtTerrain
 property ShowTraffic: Boolean When set to true, and if available in your country, traffic information can be displayed.
 property ShowBicycling: Boolean When set to true, and if available in your country, bicycle trail information can be displayed on the map.
 property ScrollWheel: Boolean When set to true, enables the use of the scroll wheel. The scroll wheel can be used to zoom in and out on the map.
 property ZoomMap: TZoomMap Is to be used to set the default zoom at startup. The zoom value is a value between 1 and 21 with 21 being the highest zoom level.

Created with the Standard Edition of HelpNDoc: Free Web Help generator

function GetElevation (Latitude, Longitude: Double): Boolean

https://www.helpndoc.com/create-epub-ebooks
https://www.helpndoc.com

My Visual Database

200 / 222

Description

Retrieves the elevation data for a single latitude and longitude coordinate. The data is added to the
Elevations collection. Returns true if the request succeeded, false otherwise. Maps Elevation API activation
is required.

Example

procedure Form1_Button1_OnClick (Sender: TObject; var Cancel: boolean);
begin
 if Form1.Map1.GetElevation(49, 2) then
 begin
 if Form1.Map1.Elevations.Count > 0 then
ShowMessage(Form1.Map1.Elevations[0].Elevation) else ShowMessage('No result');
 end;
end;

Created with the Standard Edition of HelpNDoc: Produce online help for Qt applications

function GetElevation2 (Path: TPath; ResultCount: Integer = 2): Boolean

Description

Retrieves the elevation data for a Path that contains latitude and longitude coordinates. The start location
(first coordinate in Path) and end location (last coordinate in path) are used to form a straight line. The
elevation data is retrieved along the straight path at specified intervals. The number of intervals is
indicated by the ResultCount parameter. The data is added to the Elevations collection. Returns true if the
request succeeded, false otherwise. Maps Elevation API activation is required.

Example

procedure Form1_Button1_OnClick (Sender: TObject; var Cancel: boolean);
var
 i, c: integer;
begin
 if Form1.Map1.GetElevation2(Form1.Map1.Polylines[0].Polyline.Path) then
 begin
 c := Form1.Map1.Elevations.Count-1;
 for i := 0 to c do
 begin
 ShowMessage(FloatToStr(Form1.Map1.Elevations[i].Elevation));
 end;
 end else ShowMessage('Error');
end;

Created with the Standard Edition of HelpNDoc: Produce online help for Qt applications

function DegreesToLonLat (StrLon, StrLat: String; var Lon, Lat: Double): Boolean

https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework

My Visual Database

201 / 222

Description

This function converts degrees to longitude / latitude coordinates. The result of the function is contained in
the variables Lon and Lat.

Example

procedure Form1_Button1_OnClick (Sender: TObject; var Cancel: boolean);
var
 Lon, Lat: Double;
begin
 if Form1.Map1.DegreesToLonLat('17°47''19.809"E', '49°31''46.604"N', Lon,
Lat) then
 begin
 ShowMessage('Longitude: ' + FloatToStr(Lon));
 ShowMessage('Latitude: ' + FloatToStr(Lat));
 end;
end;

Created with the Standard Edition of HelpNDoc: What is a Help Authoring tool?

function LoadGeoJSONPolyline (AFilename: string; AColor: TColor = clBlue; Opacity: Integer =
255; AWidth: Integer = 2; Zoom: Boolean = True; HoverColor: TColor = clBlue): string

Description

This function loads coordinates from a GEOJSON file and displays it on the map as a Polyline or Polylines.
Optionally set the Color, Opacity, Width, HoverColor of the Polyline(s). Optionally set Zoom to true to
automatically zoom the map to the bounds of the Polyline(s).

Function parameters:
 Parameter Type Description
 AFilename String GeoJSON file name.
 AColor TColor The color that will be used to draw the polyline. The default color is blue. Optional parameter.
 Opacity Integer The degree of transparency of the polyline. Values from 0 to 255. Optional parameter.
 AWidth Integer The width of the polyline. The default width is two pixels. Optional parameter.
 Zoom Boolean Determine whether the polyline should be automatically shown on the map. Optional parameter.
 HoverColor TColor The color the polyline will have when the mouse cursor is over it. The default color is blue. Optional parameter.

An example of a GeoJSON file:

{
 "type":"FeatureCollection","features":[
 {
 "type":"Feature",
 "properties": {
 "name": "Polyline1"
 },

https://www.helpauthoringsoftware.com

My Visual Database

202 / 222

 "geometry":{
 "type": "LineString",
 "coordinates": [[
 [-105.431410315776, 20.878495854271],
 [-105.445432904506, 20.8727217105441],
 [-105.451183560633, 20.8762102822492]
]]
 }
 },

 {
 "type":"Feature",
 "properties": {
 "name":"Polyline2"
 },

 "geometry":{
 "type": "LineString",
 "coordinates": [[
 [-105.491410315776, 20.878495854271],
 [-105.495432904506, 20.8727217105441],
 [-105.491183560633, 20.8762102822492]
]]
 }
 }

]
}

Read more about the GeoJSON format here https://geojson.org/

Example

Form1.Map1.LoadGeoJSONPolyline('D:\polylines.geojson');

Created with the Standard Edition of HelpNDoc: Write EPub books for the iPad

function LoadGeoJSONPolygon

function LoadGeoJSONPolygon (AFilename: string; BorderColor: TColor = clBlue; Opacity: Integer = 255;
BackgroundColor: TColor = clBlue; BackgroundOpacity: Integer = 100; AWidth: Integer = 2; Zoom: Boolean
= True; HoverBorderColor: TColor = clBlue; HoverBackgroundColor: TColor = clBlue): string

Description

This function loads coordinates from a GEOJSON file and displays it on the map as a Polygon or Polygons.
Optionally set the BorderColor, Opacity, BackgroundColor, BackgroundOpacity, Width, HoverBorderColor,

https://geojson.org/
https://www.helpndoc.com/create-epub-ebooks

My Visual Database

203 / 222

HoverBackgroundColor of the Polygon(s). Optionally set Zoom to true to automatically zoom the map to
the bounds of the Polygon(s).

Function parameters:
 Parameter Type Description
 AFilename String GeoJSON file name.
 BorderColor TColor The color that will be used to border the polygons. The default color is blue. Optional parameter.
 Opacity Integer The degree of transparency of the polygon border. Values from 0 to 255. Optional parameter.
 BackgroundColor TColor The color that will be used to build the polygon. The default color is blue. Optional parameter.
 BackgroundOpacity Integer The degree of transparency of the polygons. Values from 1 to 100. Optional parameter.
 AWidth Integer The width of the border for polygons. The default width is two pixels. Optional parameter.
 Zoom Boolean Determine whether the polyline should be automatically shown on the map. Optional parameter.
 HoverBorderColor TColor The color that the border of the polygon will have when the mouse cursor is over it. The default color is blue. Optional parameter.
 HoverBackgroundColor TColor The color the polygon will have when the mouse cursor is over it. The default color is blue. Optional parameter.

An example of a GeoJSON file:

{
 "type":"FeatureCollection","features":[
 {
 "type":"Feature",
 "properties": {
 "name":"Polygon1"
 },

 "geometry":{
 "type":"Polygon",
 "coordinates": [[
 [-105.431410315776, 20.878495854271],
 [-105.445432904506, 20.8727217105441],
 [-105.451183560633, 20.8762102822492]
]]
 }
 },

 {
 "type":"Feature",
 "properties": {
 "name":"Polygon2"
 },

 "geometry":{
 "type":"Polygon",
 "coordinates": [[
 [-105.491410315776, 20.878495854271],
 [-105.495432904506, 20.8727217105441],
 [-105.491183560633, 20.8762102822492]
]]
 }
 }

]

My Visual Database

204 / 222

}

Подробней о GeoJSON формате можно прочитать здесь https://geojson.org/

Example

Form1.Map1.LoadGeoJSONPolygon('D:\polygons.geojson');

Created with the Standard Edition of HelpNDoc: What is a Help Authoring tool?

function OpenMarkerInfoWindowHtml (Id: Integer; HtmlText:String): Boolean

Description

The function opens the marker info window for the marker with selected marker-id (Marker.Index). Extra
information can be passed via the HtmlText string.

Example

procedure Form1_Map1_OnMarkerClick (Sender: TObject; MarkerTitle: string;
IdMarker: Integer; Latitude, Longitude: Double; MouseLeft, MouseRight,
MouseMiddle: boolean);
begin
 Form1.Map1.CloseAllMarkersInfoWindow; // closes the previous info windows
 Form1.Map1.OpenMarkerInfoWindowHtml(IdMarker,''+ MarkerTitle + '
' +
'Lat : ' + floattostr(latitude)+ '
' + 'Lon : ' + floattostr(longitude) +
'');
end;

Created with the Standard Edition of HelpNDoc: iPhone web sites made easy

function ScreenShot (ImgType: TImgType): TGraphic

Description

The function takes a screenshot of the actual map canvas. This screenshot is taken in the chosen
imagetype: itJPeg, itBitmap or itPng. The graphic can easily be saved to file.

 Values
 itBitmap
 itJpeg
 itPng

Examples

https://geojson.org/
https://www.helpauthoringsoftware.com
https://www.helpndoc.com/feature-tour/iphone-website-generation

My Visual Database

205 / 222

// Save the map image to a file
procedure Form1_Button1_OnClick (Sender: TObject; var Cancel: boolean);
var
 png: TPngImage;
begin
 png := TPngImage(Form1.Map1.ScreenShot(itPng));
 png.SaveToFile('d:\filename.png');
 png.Free;
end;

// transfer the map image to Image in Bitmap format
procedure Form1_Button1_OnClick (Sender: TObject; var Cancel: boolean);
var
 bmp: TBitmap;
begin
 bmp := TBitmap(Form1.Map1.ScreenShot(itBitmap));
 Form1.Image1.Picture.Bitmap.Assign(bmp);
 bmp.Free;
end;

Created with the Standard Edition of HelpNDoc: Full-featured EBook editor

Image

Description

Use Image to display a graphical image on a form. For example, you can place your company logo on the
form. Supported formats are jpg, bmp, gif, png8, png24.

Class: TdbImage

Properties
 Property Type Description
 AutoSize Boolean Specifies whether the control sizes itself automatically to accommodate its contents.
 Canvas TCanvas Provides a drawing surface for embellishing bitmap images. More info.
 Center Boolean Indicates whether the image is centered in the image control.
 Cursor TCursor Specifies the image used to represent the mouse pointer when it passes into the region covered by the component. More info.
 Enabled Boolean Controls whether the component responds to mouse, keyboard, and timer events.
 Hint String Hint contains the text string that appears when the user moves the mouse over the component., see also ShowHint
 Name String The name of the component.
 Picture TPicture Specifies the image that appears on the image component. More info.
 Proportional Boolean Indicates whether the image should be changed, without distortion, so that it fits the bounds of the image component.
 ShowHint Boolean Specifies whether to show the Help Hint when the mouse pointer moves over the component, see also Hint
 Stretch Boolean Indicates whether the image should be changed so that it exactly fits the bounds of the image control.
 Tag Integer Allows you to assign a number to a component for your own needs.

https://www.helpndoc.com/create-epub-ebooks

My Visual Database

206 / 222

 TagString String Allows you to assign a string to a component for your own needs.
 Visible Boolean Specifies whether the component appears onscreen.
 Left Integer Specifies the horizontal coordinate of the left edge of a component relative to its parent.
 Top Integer Specifies the vertical coordinate of the upper-left of a component relative to its parent.
 Width Integer Specifies the horizontal size of the component in pixels.
 Height Integer Specifies the vertical size of the component in pixels.

Methods
 Method Description
 procedure Clear Clears the picture of the component.
 function CanPasteBitmapFromClipboard: boolean The function returns True if the clipboard contains an image in bmp format.
 function CopyToClipboard: boolean The function copies the component's picture to the clipboard. If successful, the function returns True.
 function PasteBitmapFromClipboard: boolean The function inserts an image from the clipboard into the component. Only images in bmp format are supported.

Events
 Event Description
 OnClick (Sender: TObject) Occurs when the user clicks the component.
 OnDoubleClick (Sender: TObject) Occurs when the user double-clicks the left mouse button when the mouse pointer is over the component.
 OnMouseDown (Sender: TObject; MouseLeft, MouseRight, MouseMiddle:
boolean; Shift, Alt, Ctrl: boolean; X, Y: Integer)

 Occurs when the user presses a mouse button with the mouse pointer over a component.

 OnMouseEnter (Sender: TObject) Occurs when the user moves the mouse into a component.
 OnMouseLeave (Sender: TObject) Occurs when the user moves the mouse outside of a component.
 OnMouseMove (Sender: TObject; Shift, Alt, Ctrl: boolean; X, Y: Integer) Occurs when the user moves the mouse pointer while the mouse pointer is over a component.
 OnMouseUp (Sender: TObject; MouseLeft, MouseRight, MouseMiddle:
boolean; Shift, Alt, Ctrl: boolean; X, Y: Integer)

 Occurs when the user releases a mouse button that was pressed with the mouse pointer over a component.

Created with the Standard Edition of HelpNDoc: Write EPub books for the iPad

property Picture: TPicture

Description

TPicture contains a bitmap, icon or metafile graphic. If the TPicture contains a bitmap graphic, the Bitmap
property specifies the graphic. If the TPicture contains an icon graphic, the Icon property specifies the
graphic. If the TPicture contains a metafile graphic, the Metafile property specifies the graphic.

 Methods and properties Description

 procedure Assign (Source: TPersistent) Copies one object to another by copying the contents of that object to the other. Example:
Form1.Image2.Picture.Assign(Form1.Image1.Picture);

 property Bitmap: TBitmap Specifies the contents of the picture object as a bitmap graphic (.BMP file format).

https://www.helpndoc.com/create-epub-ebooks

My Visual Database

207 / 222

 property Bitmap.Canvas: TCanvas Provides access to a drawing surface that represents the bitmap. More info.
 property Graphic: TGraphic Specifies the graphic that the picture contains.
 property Height: Integer Specifies the vertical size (in pixels) of the graphic. Read only.
 procedure LoadFromFile (const Filename: string) Reads the file specified in Filename and loads the data into the TPicture object. Supported formats: bmp, jpg, png, gif, tif, ico, wmf
 procedure SaveToFile (const Filename: string) Writes the picture to disk.
 property Width: Integer Specifies the horizontal size (in pixels) of the picture. Read only.

Created with the Standard Edition of HelpNDoc: Generate Kindle eBooks with ease

PageControl

Description

PageControl is a set of pages used to make a multiple page dialog box.

Class: TdbPageControl

Properties
 Property Type Description
 ActivePage TTabSheet Specifies the page currently displayed by the page control.

 ActivePageIndex Integer

 Specifies the page currently displayed by the page control. Use ActivePageIndex to get or set the active page by index rather than by object. The value of ActivePageIndex identifies a page
in the Pages property array. Changing the value of ActivePageIndex changes the ActivePage property, and vice versa. If there is no active page, reading ActivePageIndex gives a value of -1.
Setting ActivePageIndex to a value that is out of bounds (less than 0 or greater than PageCount - 1) results in the page control having no active page.
 Unlike the TabIndex property, ActivePageIndex returns the index of the selected tab, including invisible tabs (Form1.PageControl1.Pages[1].TabVisible := False).

 CanFocus Boolean

 It checks if the component can get input focus, which is usually necessary before using the SetFocus method. If a component has Visible = False or Enabled = False property, or if the
component is located on a parent component with those properties, using the SetFocus method will cause an error.

example: if Form1.PageControl1.CanFocus then Form1.PageControl1.SetFocus;
 Cursor TCursor Specifies the image used to represent the mouse pointer when it passes into the region covered by the control. More info.
 Enabled Boolean Controls whether the component responds to mouse, keyboard, and timer events.
 Focused Boolean Determines whether the control has input focus.
 Font TFont Allows you to set font name, size, color and style. More info.
 Hint String Hint contains the text string that appears when the user moves the mouse over the component., see also ShowHint
 MultiLine Boolean Determines whether the tabs can appear on more than one row.
 Name String The name of the component.
 Pages[i] TTabSheet Allows you to access the properties of the desired tab by its index.
 PageCount Integer Indicates the number of pages in the PageControl component.
 ShowHint Boolean Specifies whether to show the Help Hint when the mouse pointer moves over the component, see also Hint
 Style TTabStyle Specifies the style of the tab control. Available values: tsTabs (default), tsButtons (button style tabs), tsFlatButtons (flat button style tabs).

https://www.helpndoc.com/feature-tour/create-ebooks-for-amazon-kindle

My Visual Database

208 / 222

 TabIndex Integer
 Identifies the selected tab on a tab control. If there is no selected tab, it returns -1.
Unlike the ActivePageIndex property, TabIndex returns the sequence number of the selected tab without considering the tabs that are not visible (Form1.PageControl1.Pages[1].TabVisible :=
False).

 TabPosition TTabPosition Determines whether tabs appear at the top or bottom. Available values: tpTop, tpBottom, tpLeft, tpRight
 TabOrder Integer Indicates the position of the component in its parent's tab order. TabOrder is the order in which child components are visited when the user presses the Tab key.
 TabStop Boolean Determines whether the user can tab to a control. Use the TabStop to allow or disallow access to the control using the Tab key.
 Tag Integer Allows you to assign a number to a component for your own needs.
 TagString String Allows you to assign a string to a component for your own needs.
 Visible Boolean Specifies whether the component appears onscreen.
 Left Integer Specifies the horizontal coordinate of the left edge of a component relative to its parent.
 Top Integer Specifies the vertical coordinate of the upper-left of a component relative to its parent.
 Width Integer Specifies the horizontal size of the component in pixels.
 Height Integer Specifies the vertical size of the component in pixels.

Methods
 Method Description
 procedure SetFocus Gives the input focus to the component.

Events
 Event Description
 OnChange (Sender: TObject) Occurs after a new tab is selected.

 OnChanging (Sender: TObject; var AllowChange: Boolean) Occurs immediately before a new tab is selected. Set the AllowChange parameter to False to
prevent the change.

 OnEnter (Sender: TObject) Occurs when a component receives the input focus.
 OnExit (Sender: TObject) Occurs when the input focus shifts away from one component to another.
 OnMouseDown (Sender: TObject; MouseLeft, MouseRight, MouseMiddle: boolean; Shift, Alt, Ctrl: boolean; X, Y: Integer) Occurs when the user presses a mouse button with the mouse pointer over a component.
 OnMouseEnter (Sender: TObject) Occurs when the user moves the mouse into a component.
 OnMouseLeave (Sender: TObject) Occurs when the user moves the mouse outside of a component.
 OnMouseMove (Sender: TObject; Shift, Alt, Ctrl: boolean; X, Y: Integer) Occurs when the user moves the mouse pointer while the mouse pointer is over a component.

 OnMouseUp (Sender: TObject; MouseLeft, MouseRight, MouseMiddle: boolean; Shift, Alt, Ctrl: boolean; X, Y: Integer) Occurs when the user releases a mouse button that was pressed with the mouse pointer over a
component.

 OnResize (Sender: TObject) Occurs immediately after the control is resized.
 OnDropFiles (Sender: TObject; ArrayOfFiles: array of string; X, Y: Integer) Occurs when user tries to drag and drop a file from explorer to a form. More info.

Created with the Standard Edition of HelpNDoc: Easily create EPub books

class TTabSheet

Description

TabSheet is an individual page in a PageControl component.

Allows you to control the tabs of the PageControl component.

https://www.helpndoc.com/feature-tour

My Visual Database

209 / 222

Class: TdbTabSheet

Properties
 Property Description
 BorderWidth: Integer Specifies the width of the control's border.
 Caption: string Defines the title of the tab.
 ControlCount: Integer Returns the number of child controls.
 Controls[i]: TControl Access to a control by its index.
 Cursor: TCursor Specifies the image used to represent the mouse pointer when it passes into the region covered by the control. More info.
 Enabled: Boolean Controls whether the component responds to mouse, keyboard, and timer events.
 Font: TFont Allows you to set font name, size, color and style. More info.
 Hint: string Hint contains the text string that appears when the user moves the mouse over the component, see also ShowHint
 Name: string The name of the component.
 PageIndex: Integer Indicates the index of the tab sheet in the list of tab sheets maintained by the page control.
 ShowHint: Boolean ShowHint specifies whether to show the Help Hint when the mouse pointer moves over the component, see also Hint

 TabIndex: Integer Indicates the position of the tab sheet in the set of visible tabs in a PageControl component. If a tab sheet's TabVisible property is
false, the TabIndex property is -1.

 TabVisible: Boolean Specifies whether the tab of the TTabSheet object appears in its PageControl.
 Tag: Integer Allows you to assign a number to a component for your own needs.
 TagString: string Allows you to assign a string to a component for your own needs.
 Visible: Boolean Specifies whether the component appears onscreen.
 Left: Integer Specifies the horizontal coordinate of the left edge of a component relative to its parent.
 Top: Integer Specifies the vertical coordinate of the upper-left of a component relative to its parent.
 Width: Integer Specifies the horizontal size of the component in pixels.
 Height: Integer Specifies the vertical size of the component in pixels.

Methods
 Метод Описание

 function CanFocus: Boolean

 It checks if the component can get input focus, which is usually necessary before using the SetFocus method. If a component has TabVisible = False or Enabled =
False then using the SetFocus method will cause an error.

Example: if Form1.PageControl1.Pages[0].CanFocus then Form1.PageControl1.Pages[0].SetFocus;
 function Focused: boolean Determines whether the control has input focus.
 procedure SetFocus Gives the input focus to the component.

События компонента
 Событие Описание
 OnEnter (Sender: TObject) Occurs when a control receives the input focus.
 OnExit (Sender: TObject) Occurs when the input focus shifts away from one control to another.

My Visual Database

210 / 222

 OnMouseDown (Sender: TObject; MouseLeft, MouseRight, MouseMiddle: boolean; Shift, Alt, Ctrl: boolean; X, Y: Integer) Occurs when the user presses a mouse button with the mouse pointer over a control.
 OnMouseEnter (Sender: TObject) Occurs when the user moves the mouse into a control.
 OnMouseLeave (Sender: TObject) Occurs when the user moves the mouse outside of a control.
 OnMouseMove (Sender: TObject; Shift, Alt, Ctrl: boolean; X, Y: Integer) Occurs when the user moves the mouse pointer while the mouse pointer is over a control.

 OnMouseUp (Sender: TObject; MouseLeft, MouseRight, MouseMiddle: boolean; Shift, Alt, Ctrl: boolean; X, Y: Integer) Occurs when the user releases a mouse button that was pressed with the mouse pointer over a
component.

 OnResize (Sender: TObject) Occurs immediately after the control is resized.
 OnDropFiles (Sender: TObject; ArrayOfFiles: array of string; X, Y: Integer) Occurs when user tries to drag and drop a file from explorer to a form. More info.

Example

// Change the title of the first tab
procedure Form1_Button1_OnClick (Sender: TObject; var Cancel: boolean);
begin
 Form1.PageControl1.Pages[0].Caption := 'Tab name';
end;

Created with the Standard Edition of HelpNDoc: Easy EPub and documentation editor

GroupBox

Description

The GroupBox component represents a standard Windows group box, used to group related controls on
a form.

Class: TdbGroupBox

Properties
 Property Type Description

 CanFocus Boolean

 It checks if the component can get input focus, which is usually necessary before using the SetFocus method. If a component has Visible = False or Enabled = False property, or if the
component is located on a parent component with those properties, using the SetFocus method will cause an error.

example: if Form1.GroupBox1.CanFocus then Form1.GroupBox1.SetFocus;
 Caption Defines the title of the component.
 Color TColor Specifies the background color of the control. The color change for this component does not work since Windows Vista.
 ControlCount Integer Returns the number of child controls.
 Controls[i] TControl Access to a control by its index.

https://www.helpndoc.com

My Visual Database

211 / 222

 Cursor TCursor Specifies the image used to represent the mouse pointer when it passes into the region covered by the control. More info.
 Enabled Boolean Controls whether the component responds to mouse, keyboard, and timer events.
 Focused Boolean Determines whether the control has input focus.
 Font TFont Allows you to set font name, size, color and style. The color change for this component does not work since Windows Vista. More info.
 Hint String Hint contains the text string that appears when the user moves the mouse over the component., see also ShowHint
 Name String The name of the component.
 ShowHint Boolean Specifies whether to show the Help Hint when the mouse pointer moves over the component, see also Hint
 TabOrder Integer Indicates the position of the component in its parent's tab order. TabOrder is the order in which child components are visited when the user presses the Tab key.
 TabStop Boolean Determines whether the user can tab to a control. Use the TabStop to allow or disallow access to the control using the Tab key.
 Tag Integer Allows you to assign a number to a component for your own needs.
 TagString String Allows you to assign a string to a component for your own needs.
 Visible Boolean Specifies whether the component appears onscreen.
 Left Integer Specifies the horizontal coordinate of the left edge of a component relative to its parent.
 Top Integer Specifies the vertical coordinate of the upper-left of a component relative to its parent.
 Width Integer Specifies the horizontal size of the component in pixels.
 Height Integer Specifies the vertical size of the component in pixels.

Methods
 Method Description
 procedure SetFocus Gives the input focus to the component.

Events
 Event Description
 OnClick (Sender: TObject) Occurs when the user clicks the component.

 OnDoubleClick (Sender: TObject) Occurs when the user double-clicks the left mouse button when the mouse pointer is over the
component.

 OnEnter (Sender: TObject) Occurs when a component receives the input focus.
 OnExit (Sender: TObject) Occurs when the input focus shifts away from one component to another.
 OnMouseDown (Sender: TObject; MouseLeft, MouseRight, MouseMiddle: boolean; Shift, Alt, Ctrl: boolean; X, Y: Integer) Occurs when the user presses a mouse button with the mouse pointer over a component.
 OnMouseEnter (Sender: TObject) Occurs when the user moves the mouse into a component.
 OnMouseLeave (Sender: TObject) Occurs when the user moves the mouse outside of a component.
 OnMouseMove (Sender: TObject; Shift, Alt, Ctrl: boolean; X, Y: Integer) Occurs when the user moves the mouse pointer while the mouse pointer is over a component.

 OnMouseUp (Sender: TObject; MouseLeft, MouseRight, MouseMiddle: boolean; Shift, Alt, Ctrl: boolean; X, Y: Integer) Occurs when the user releases a mouse button that was pressed with the mouse pointer over a
component.

 OnDropFiles (Sender: TObject; ArrayOfFiles: array of string; X, Y: Integer) Occurs when user tries to drag and drop a file from explorer to a form. More info.

Created with the Standard Edition of HelpNDoc: Full-featured multi-format Help generator

Panel

Description

Use Panel to put an empty panel on a form.

https://www.helpndoc.com/help-authoring-tool

My Visual Database

212 / 222

Class: TdbPanel

Properties
 Property Type Description
 AutoSize Boolean Specifies whether the component sizes itself automatically to accommodate its contents.
 BevelOuter TBevelCut Determines the style of the outer bevel of a panel. Available values: bvRaised, bvLowered, bvNone.

 CanFocus Boolean

 It checks if the component can get input focus, which is usually necessary before using the SetFocus method. If a component has Visible = False or Enabled = False property, or if the
component is located on a parent component with those properties, using the SetFocus method will cause an error.

example: if Form1.Panel1.CanFocus then Form1.Panel1.SetFocus;
 Canvas TCanvas Specifies the TCanvas object that presents a drawing surface for the component. More info.
 Caption The text that will be displayed in the center of the component.
 Color TColor Specifies the background color of the control. The color change for this component does not work since Windows Vista.
 ControlCount Integer Returns the number of child controls.
 Controls[i] TControl Access to a control by its index.
 Cursor TCursor Specifies the image used to represent the mouse pointer when it passes into the region covered by the control. More info.
 Enabled Boolean Controls whether the component responds to mouse, keyboard, and timer events.
 Focused Boolean Determines whether the control has input focus.
 Font TFont Allows you to set font name, size, color and style. More info.
 Hint String Hint contains the text string that appears when the user moves the mouse over the component., see also ShowHint
 Name String The name of the component.
 ShowHint Boolean Specifies whether to show the Help Hint when the mouse pointer moves over the component, see also Hint
 TabOrder Integer Indicates the position of the component in its parent's tab order. TabOrder is the order in which child components are visited when the user presses the Tab key.
 TabStop Boolean Determines whether the user can tab to a control. Use the TabStop to allow or disallow access to the control using the Tab key.
 Tag Integer Allows you to assign a number to a component for your own needs.
 TagString String Allows you to assign a string to a component for your own needs.
 Visible Boolean Specifies whether the component appears onscreen.
 Left Integer Specifies the horizontal coordinate of the left edge of a component relative to its parent.
 Top Integer Specifies the vertical coordinate of the upper-left of a component relative to its parent.
 Width Integer Specifies the horizontal size of the component in pixels.
 Height Integer Specifies the vertical size of the component in pixels.

Methods
 Method Description
 procedure SetFocus Gives the input focus to the component.

Events
 Event Description
 OnClick (Sender: TObject) Occurs when the user clicks the component.

 OnDoubleClick (Sender: TObject) Occurs when the user double-clicks the left mouse button when the mouse pointer is over the
component.

My Visual Database

213 / 222

 OnEnter (Sender: TObject) Occurs when a component receives the input focus.
 OnExit (Sender: TObject) Occurs when the input focus shifts away from one component to another.
 OnMouseDown (Sender: TObject; MouseLeft, MouseRight, MouseMiddle: boolean; Shift, Alt, Ctrl: boolean; X, Y: Integer) Occurs when the user presses a mouse button with the mouse pointer over a component.
 OnMouseEnter (Sender: TObject) Occurs when the user moves the mouse into a component.
 OnMouseLeave (Sender: TObject) Occurs when the user moves the mouse outside of a component.
 OnMouseMove (Sender: TObject; Shift, Alt, Ctrl: boolean; X, Y: Integer) Occurs when the user moves the mouse pointer while the mouse pointer is over a component.

 OnMouseUp (Sender: TObject; MouseLeft, MouseRight, MouseMiddle: boolean; Shift, Alt, Ctrl: boolean; X, Y: Integer) Occurs when the user releases a mouse button that was pressed with the mouse pointer over a
component.

 OnResize (Sender: TObject) Occurs immediately after the component is resized.
 OnDropFiles (Sender: TObject; ArrayOfFiles: array of string; X, Y: Integer) Occurs when user tries to drag and drop a file from explorer to a form. More info.

Created with the Standard Edition of HelpNDoc: Single source CHM, PDF, DOC and HTML Help creation

OnDropFiles

Description

Occurs when an attempt is to drag a file from explorer to the component for which this event was created.
It also allows you to get the names of the files that were dragged to the component by the user.

Example

procedure Form1_Memo1_OnDropFiles (Sender: TObject; ArrayOfFiles: array of
string; X, Y: Integer);
var
 i, c: integer;
begin
 c := Length(ArrayOfFiles)-1;
 for i := 0 to c do
 begin
 Form1.Memo1.Lines.Add(ArrayOfFiles[i]);
 end;
end;

Created with the Standard Edition of HelpNDoc: What is a Help Authoring tool?

Classes

Created with the Standard Edition of HelpNDoc: Produce electronic books easily

TCanvas

Description

TCanvas provides properties and methods that assist in creating an image by:

· Specifying the type of brush, pen, and font to use.
· Drawing and filling a variety of shapes and lines.
· Writing text.

https://www.helpndoc.com/help-authoring-tool
https://www.helpauthoringsoftware.com
https://www.helpndoc.com/create-epub-ebooks

My Visual Database

214 / 222

· Rendering graphic images.

Class Methods and Properties
 Methods and Properties Description

 procedure Arc (X1, Y1, X2, Y2, X3, Y3, X4, Y4: Integer)

 Use Arc to draw an elliptically curved line with the current Pen. The arc traverses the perimeter of an ellipse that is bounded by
the points (X1,Y1) and (X2,Y2). The arc is drawn following the perimeter of the ellipse, counterclockwise, from the starting point
to the ending point. The starting point is defined by the intersection of the ellipse and a line defined by the center of the ellipse
and (X3,Y3). The ending point is defined by the intersection of the ellipse and a line defined by the center of the ellipse and
(X4, Y4).

 procedure ArcTo (X1, Y1, X2, Y2, X3, Y3, X4, Y4: Integer)

 Draws an arc on the image along the perimeter of the ellipse bounded by the specified rectangle. The arc traverses the
perimeter of an ellipse that is bounded by the points (X1,Y1) and (X2,Y2). The arc is drawn following the perimeter of the
ellipse, counterclockwise, from the starting point to the ending point. The starting point is defined by the intersection of the
ellipse and a line defined by the center of the ellipse and (X3,Y3). The ending point is defined by the intersection of the ellipse
and a line defined by the center of the ellipse and (X4, Y4).

 procedure AngleArc (X, Y: Integer; Radius: Cardinal; StartAngle, SweepAngle: Single)

 Draws an arc on the image along the perimeter of the circle defined by the parameters. The AngleArc method draws a line
from the current position to the starting point of the arc and then a counterclockwise circular arc to the arc endpoint. The arc
traverses the perimeter of a circle whose center lies at (X,Y) and whose radius is Radius. The arc is drawn following the
perimeter of the circle, counterclockwise, from the StartAngle with a sweep angle of SweepAngle.

If the sweep angle is greater than 360 degrees, the entire circle is drawn and part of the arc is drawn multiple times.
 property Brush: TBrush Determines the color and pattern for filling graphical shapes and backgrounds.
 property Brush.Color: TColor Indicates the color of the brush.

 property Brush.Style: TBrushStyle Specifies the pattern for the brush. Available values: bsSolid, bsClear, bsHorizontal, bsVertical, bsFDiagonal, bsBDiagonal,
bsCross, bsDiagCross

 procedure Chord (X1, Y1, X2, Y2, X3, Y3, X4, Y4: Integer)
 Draws a closed figure represented by the intersection of a line and an ellipse. Use Chord to create a shape that is defined by
an arc and a line that joins the endpoints of the arc. The chord consists of a portion of an ellipse that is bounded by the points
(X1,Y1) and (X2,Y2). The ellipse is bisected by a line that runs between the points (X3,Y3) and (X4,Y4).

 procedure CopyRect (destLeft, destTop, destRight, destBottom: integer; Canvas: TCanvas;
srcLeft, srcTop, srcRight, srcBottom: integer

 Copies part of an image from another canvas into the canvas. Use CopyRect to transfer part of the image on another canvas
to the image of the TCanvas object. Dest specifies the rectangle on the canvas where the source image will be copied. The
Canvas parameter specifies the canvas with the source image. Source specifies a rectangle bounding the portion of the source
canvas that will be copied.

 procedure Draw (X, Y: Integer; Graphic: TGraphic) Renders the graphic specified by the Graphic parameter on the canvas at the location given by the coordinates (X, Y).

 procedure Draw2 (X, Y: Integer; Graphic: TGraphic; Opacity: Byte) Renders the graphic specified by the Graphic parameter on the canvas at the location given by the coordinates (X, Y). The
Opacity parameter allows you to set the level of transparency (value from 0 to 255).

 procedure Ellipse (X1, Y1, X2, Y2: Integer)
 Draws the ellipse defined by a bounding rectangle on the canvas. The top left point at pixel coordinates (X1, Y1) and the
bottom right point at (X2, Y2). If the bounding rectangle is a square, a circle is drawn.The ellipse is outlined using the value of
Pen, and filled using the value of Brush.

 property Font: TFont The property is responsible for the appearance of the text, which can be output using the TextOut method.
 procedure LineTo (X, Y: Integer) Draws a line on the canvas from PenPos to the point specified by X and Y, and sets the pen position to (X, Y).
 procedure MoveTo (X, Y: Integer) Changes the current drawing position to the point (X,Y).
 property Pen: TPen Specifies the kind of pen the canvas uses for drawing lines and outlining shapes.
 property Pen.Color: TColor Determines the color used to draw lines on the canvas.

 property Pen.Style: TPenStyle Determines the style in which the pen draws lines. Available values: psSolid, psDash, psDot, psDashDot, psDashDotDot,
psClear, psInsideFrame

 property Pen.Width: Integer Specifies the width of the pen in pixels.
 procedure Pie (X1, Y1, X2, Y2, X3, Y3, X4, Y4: Integer) Draws a pie-shaped section of the ellipse bounded by the rectangle (X1, Y1) and (X2, Y2) on the canvas.

 property Pixels (X, Y: Integer): TColor
 Specifies the color of the pixels within the current ClipRect. Read Pixels to learn the color on the drawing surface at a specific
pixel position within the current clipping region. If the position is outside the clipping rectangle, reading the value of Pixels
returns -1. Write Pixels to change the color of individual pixels on the drawing surface. Use Pixels for detailed effects on an

My Visual Database

215 / 222

image.
 procedure Rectangle (X1, Y1, X2, Y2: Integer) Draws a rectangle on the canvas.

 procedure RoundRect (X1, Y1, X2, Y2, X3, Y3: Integer)

 Draws a rectangle with rounded corners on the canvas. Use RoundRect to draw a rounded rectangle using Pen and fill it with
Brush. The rectangle will have edges defined by the points (X1,Y1), (X2,Y1), (X2,Y2), (X1,Y2), but the corners will be shaved to
create a rounded appearance. The curve of the rounded corners matches the curvature of an ellipse with width X3 and height
Y3.

 procedure TextOut (X, Y: Integer; const Text: string) Writes a string on the canvas, starting at the point (X,Y), and then updates the PenPos to the end of the string. The string will
be written using the current value of Font.

 property Handle: Integer Specifies the handle for this canvas.

Example

 Form1.Image1.Canvas.Brush.Style := bsClear;
 Form1.Image1.Canvas.Font.Orientation := 270;
 Form1.Image1.Canvas.MoveTo(50, 50);
 Form1.Image1.Canvas.LineTo(100, 100);
 Form1.Image1.Canvas.TextOut(150, 150, 'Texts');
 Form1.Image1.Canvas.Ellipse(30, 30, 45, 45);

Created with the Standard Edition of HelpNDoc: Free Qt Help documentation generator

TFont

Description

TFont describes font characteristics used when displaying text.

Properties
 Property Description
 Color: TColor Specifies the color of the text.
 Name: String Identifies the typeface of the font.
 Size: Integer Specifies the height of the font in points.
 Style: TFontStyles Determines whether the font is normal, italic, underlined, bold, and so on.

Example

Form1.Button1.Font.Color := clRed;
Form1.Button1.Font.Name := 'Arial';
Form1.Button1.Font.Size := 14;
Form1.Button1.Font.Style := fsBold + fsItalic + fsUnderline + fsStrikeOut;

Created with the Standard Edition of HelpNDoc: Free EBook and documentation generator

TSizeConstraints

Description

https://www.helpndoc.com
https://www.helpndoc.com

My Visual Database

216 / 222

Specifies the size constraints for the control. Use Constraints to specify the minimum and maximum width
and height of the control. When Constraints contains maximum or minimum values, the component cannot
be resized to violate those constraints.

Example

Form1.Constraints.MaxWidth := 800;
Form1.Constraints.MaxHeight := 600;
Form1.Constraints.MinWidth := 200;
Form1.Constraints.MinHeight := 150;

Created with the Standard Edition of HelpNDoc: Easily create PDF Help documents

TStringList

Description

TStringsList introduces many properties and methods to:

· Add or delete strings at specified positions in the list.
· Rearrange the strings in the list.
· Access the string at a particular location.
· Read the strings from or write the strings to a file or stream.
· Associate an object with each string in the list.
· Store and retrieve strings as name-value pairs.

Properties
 Свойство Назначение
 Count: Integer The number of strings in the list.
 Sorted: Boolean Specifies whether the strings in the list should be automatically sorted.
 Text: String Lists the strings in the TStringsList object as a single string with the individual strings delimited by carriage returns and line feeds.

Methods
 Метод Назначение
 function Add (const S: string): Integer Adds a new string to the list. Add returns the position of the item in the list, where the first item in the list has a value of 0.
 procedure Clear Deletes all the strings from the list.
 procedure Delete (Index: Integer) Removes the string specified by the Index parameter.

 function Find (s: string; var Index: integer): Boolean
 Locates the index for a string in a sorted list and indicates whether a string with that value already exists in the list. If the list
does not contain a string that matches S, Find returns false. Only use Find with sorted lists. For unsorted lists, use the IndexOf
method instead.

 function IndexOf (const S: string): Integer Returns the position of a string in the list. If the string does not have a match in the string list, IndexOf returns -1.

 procedure Insert (Index: Integer; const S: string) Inserts a string to the list at the position specified by Index. If the list is sorted, calling Insert will raise an EListError exception.
Use Add with sorted lists.

https://www.helpndoc.com/feature-tour

My Visual Database

217 / 222

 procedure LoadFromFile (const FileName: string) Fills the string list with the lines of text in a specified file.

 procedure Move (CurIndex, NewIndex: Integer) Changes the position of a string in the list. Use Move to move the string at position CurIndex so that it occupies the position
NewIndex.

 procedure SaveToFile (const FileName: string) Saves the strings in the current object to the specified FileName file.
 procedure Sort Sorts the strings in the list in ascending order.

Example

var
 sl: TStringList;
begin
 sl := TStringList.Create;
 try
 sl.Add('String 1');
 sl.Add('String 2');
 sl.Add('String 3');
 sl.Insert(1, 'One more string'); // inserts a new string in the list,
the numbering starts from zero.
 sl.SaveToFile('d:\textfile.txt');
 finally
 sl.Free;
 end;

Created with the Standard Edition of HelpNDoc: iPhone web sites made easy

Types

Created with the Standard Edition of HelpNDoc: Easily create Help documents

TColor

Description

TColor is used to specify the color of a component.

You can use hexadecimal numbers to specify an arbitrary color.
example:

Form1.Color := $00DDEEFF;

where FF - red, EE - green, DD - blue.

If you are more accustomed to ordinary numbers, you can use the RGB function, where each color is

https://www.helpndoc.com/feature-tour/iphone-website-generation
https://www.helpndoc.com/feature-tour

My Visual Database

218 / 222

specified by a number from 0 to 255.
example:

Form1.Color := RGB(255, 238, 221);

In addition, you can use text color constants
example:

Form1.Color := clWindowText;
Form1.Color := clRed;

The following table lists the color constants:

 Value Meaning
 clBlack Black
 clMaroon Maroon
 clGreen Green
 clOlive Olive Green
 clNavy Navy Blue
 clPurple Purple
 clTeal Teal
 clGray Gray
 clSilver Silver
 clRed Red
 clLime Lime Green
 clYellow Yellow
 clBlue Blue
 clFuchsia Fuchsia
 clAqua Aqua
 clWhite White

The following table lists the colors that are defined in the Windows Control panel:

 Value Meaning
 clActiveBorder Current border color of the active window.
 clActiveCaption Current color of the active window's title bar.
 clAppWorkSpace Current color of the application workspace.
 clBackground Current background color of the Windows desktop.
 clBtnFace Current color of a button face.
 clBtnHighlight Current color of the highlighting on a button.
 clBtnShadow Current color of a shadow cast by a button.
 clBtnText Current color of text on a button.
 clCaptionText Current color of the text on the active window's title bar.

 clGradientActiveCaption Windows 98 or Windows 2000: Right-side color in the color gradient of an active window's title bar.
clActiveCaption specifies the left side color.

My Visual Database

219 / 222

 clGradientInactiveCaption Windows 98 or Windows 2000: Right-side color in the color gradient of an inactive window's title bar.
clInactiveCaption specifies the left side color.

 clGrayText Current color of dimmed text.
 clHighlight Current background color of selected text.
 clHighlightText Current color of selected text.
 clHotLight
 clInactiveBorder Current border color of inactive windows.
 clInactiveCaption Current color of inactive windows' title bar.
 clInactiveCaptionText Current color of the text on an inactive window's title bar.
 clInfoBk Windows 95 or NT 4.0 only: Background color for tool tip controls.
 clInfoText Windows 95 or NT 4.0 only: Text color for tool tip controls.
 clMenu Current background color of menus.
 clMenuBar Current color of the menu bar.
 clMenuHighlight Current color of the highlighting on a menu.
 clMenuText Current color of text on menus.
 clScrollBar Current color of the scroll bar track.
 cl3DDkShadow Windows 95 or NT 4.0 only: Dark shadow for three-dimensional display elements.

 cl3DLight Windows 95 or NT 4.0 only: Light color for three-dimensional display elements (for edges facing the
light source).

 clWindow Current background color of windows.
 clWindowFrame Current color of window frames.
 clWindowText Current color of text in windows.

Created with the Standard Edition of HelpNDoc: Easily create Web Help sites

TCursor

Description

TCursor identifies the cursor type.

A variable of type TCursor can have one of the following values:

 Value Description
 crAppStart Hour glass and standard pointer combination cursor shown at application startup
 crArrow Default cursor.
 crCross Fine cross-shaped cursor used in graphic applications for precise positioning.
 crDefault Default cursor: thick arrow pointing up and left.
 crDrag Drag cursor for single items being dragged.
 crHandPoint An upward pointing hand cursor. This is normally used to identify a selectable item, such as a web page link.
 crHelp Question mark and standard pointer operation.
 crHourGlass Hour glass cursor to indicate a busy process.
 crHSplit Cursor shown when the mouse is over a horizontal splitter.
 crIBeam Text insert cursor in the form of a thin capital I
 crMultiDrag Drag cursor for multiple items being dragged.
 crNo Black cross in a black circle indicating invalid mouse target location.
 crNoDrop White cross in a white circle indicating that a drag operation is hovering over an invalid drop target.
 crSizeAll Cursor for resizing up, down, left, and right.
 crSizeNESW Resizing cursor from North-West to South-East resizing.

https://www.helpndoc.com/feature-tour

My Visual Database

220 / 222

 crSizeNS Vertical resizing cursor.
 crSizeNWSE Resizing cursor from North-West to South-East resizing.
 crSizeWE Horizontal resizing cursor.
 crSQLWait Hour glass cursor to indicate a busy SQL database operation.
 crUpArrow Thin upward pointing cursor.
 crVSplit Cursor shown when the mouse is over a vertical splitter.

Example

Form1.Cursor := crHandPoint;

Created with the Standard Edition of HelpNDoc: Create HTML Help, DOC, PDF and print manuals from 1
single source

TDateTime

Description

The TDateTime type holds a date and time value. It is stored as a Double variable, with the date as the
integral part, and time as fractional part.
Because TDateTime is actually a double, you can perform calculations on it as if it were a number. This is
useful for calculations such as the difference between two dates.

Created with the Standard Edition of HelpNDoc: Free Qt Help documentation generator

Examples

Created with the Standard Edition of HelpNDoc: Single source CHM, PDF, DOC and HTML Help creation

Components

Created with the Standard Edition of HelpNDoc: iPhone web sites made easy

Examples with the Map component

· Creating a marker on the map

· Show the specified area on the map

· Cycle through all markers on the map

· Creating polylines on the map

· Moving all polylines on the map

· Creating polygons on the map (circle, rectangle, polygon)

· Get the height of the Earth's surface for the specified coordinates

· Get the height of the ground surface for the specified path
· Converting text representation of geographic coordinates to latitude and longitude
· Creating polylines on the map based on data from GeoJSON file
· Creating polygons on the map based on data from GeoJSON file
· When you click on the marker, the label will show
· Take a screenshot from the map
· Adding a marker to a map with additional data

https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com
https://www.helpndoc.com/help-authoring-tool
https://www.helpndoc.com/feature-tour/iphone-website-generation
http://myvisualdatabase.com/forum/viewtopic.php?id=4038

My Visual Database

221 / 222

Created with the Standard Edition of HelpNDoc: Easily create Web Help sites

Examples with the Calendar component

Select the days on the calendar

Created with the Standard Edition of HelpNDoc: iPhone web sites made easy

Examples with the TableGrid component

· Populate a component with data based on an SQL query

· Adding and renaming popup menu items

· Automatic height of rows depending on their content

· How to make a timetable

· How to make a timetable 2

· Next and Previous buttons

· Gantt chart

· Striped TableGrid

· Change the color of the cell component TableGrid

Created with the Standard Edition of HelpNDoc: Create cross-platform Qt Help files

Examples with the TreeView component

· Adding and renaming popup menu items

· Automatic height of rows depending on their content

Created with the Standard Edition of HelpNDoc: Free EPub producer

Examples with the DBFile component

· How to add multiple files to the database

Created with the Standard Edition of HelpNDoc: Create help files for the Qt Help Framework

Examples with the DBImage component

· How to resize picture before save to database

Created with the Standard Edition of HelpNDoc: Easily create EPub books

Examples with the Button component

· Own icons for buttons

Created with the Standard Edition of HelpNDoc: Easy EBook and documentation generator

Examples with the Counter component

· Creating custom counter (eg .: MS-0001, MS-0002)

Created with the Standard Edition of HelpNDoc: News and information about help authoring tools and
software

Database

· Automatic database backup (SQLite)

https://www.helpndoc.com/feature-tour
https://www.helpndoc.com/feature-tour/iphone-website-generation
http://myvisualdatabase.com/forum/viewtopic.php?id=4799
http://myvisualdatabase.com/forum/viewtopic.php?id=4804
http://myvisualdatabase.com/forum/viewtopic.php?id=1451
http://myvisualdatabase.com/forum/viewtopic.php?id=4287
http://myvisualdatabase.com/forum/viewtopic.php?id=1430
http://myvisualdatabase.com/forum/viewtopic.php?id=1424
https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
https://www.helpndoc.com/create-epub-ebooks
http://myvisualdatabase.com/forum/viewtopic.php?id=1482
https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
http://myvisualdatabase.com/forum/viewtopic.php?id=4396
http://myvisualdatabase.com/forum/viewtopic.php?id=1482
https://www.helpndoc.com/feature-tour
http://myvisualdatabase.com/forum/viewtopic.php?id=3491
https://www.helpndoc.com
http://myvisualdatabase.com/forum/viewtopic.php?id=1444
https://www.helpauthoringsoftware.com
https://www.helpauthoringsoftware.com
http://myvisualdatabase.com/forum/viewtopic.php?id=1438

My Visual Database

222 / 222

· Logging with using triggers (SQLite)

· Check the existence of record before saving

Created with the Standard Edition of HelpNDoc: Easily create CHM Help documents

Files

· Searching for files on disk

Created with the Standard Edition of HelpNDoc: Create cross-platform Qt Help files

Internet

· Sending E-mail message with a file
· MySQL with SSL
· How to connect to MySQL using script
· Sending SMS
· Reads email messages (POP3)

Created with the Standard Edition of HelpNDoc: Easily create EBooks

Report

· Send report document to E-mail

· Display an image in a report when using the LinkFile

· Subreports

· Print barcode

· The figures in words

Created with the Standard Edition of HelpNDoc: Single source CHM, PDF, DOC and HTML Help creation

Others

· How to translate system interface and messages

· COM port

· Create trial project

· How to work with CSV files

· Work with SNMP devices (exm: monitoring printers on the network)

· Windows Video Media Player

· Webcam integration using ffmpeg.exe utility

· Using .chm help file in your project

· How to make Installer for your project using InnoSetup

· Regular expression

· Creating your own menu item "About" and a window with information

· Hide the main menu (File, Options, About)

· Run project on Windows startup

· Calculating on the form

Created with the Standard Edition of HelpNDoc: Free PDF documentation generator

http://myvisualdatabase.com/forum/viewtopic.php?id=3642
http://myvisualdatabase.com/forum/viewtopic.php?id=1441
https://www.helpndoc.com/feature-tour
http://myvisualdatabase.com/forum/viewtopic.php?id=4292
https://www.helpndoc.com/feature-tour/create-help-files-for-the-qt-help-framework
http://myvisualdatabase.com/forum/viewtopic.php?id=1445
http://myvisualdatabase.com/forum/viewtopic.php?id=4274
http://myvisualdatabase.com/forum/viewtopic.php?id=1805
http://myvisualdatabase.com/forum/viewtopic.php?id=1418
http://myvisualdatabase.com/forum/viewtopic.php?id=3514
https://www.helpndoc.com/feature-tour
http://myvisualdatabase.com/forum/viewtopic.php?id=1757
http://myvisualdatabase.com/forum/viewtopic.php?id=1427
http://myvisualdatabase.com/forum/viewtopic.php?id=1664
http://myvisualdatabase.com/forum/viewtopic.php?id=1435
http://myvisualdatabase.com/forum/viewtopic.php?id=1431
https://www.helpndoc.com/help-authoring-tool
http://myvisualdatabase.com/forum/viewtopic.php?id=5402
http://myvisualdatabase.com/forum/viewtopic.php?id=2951
http://myvisualdatabase.com/forum/viewtopic.php?id=1434
http://myvisualdatabase.com/forum/viewtopic.php?id=5355
http://myvisualdatabase.com/forum/viewtopic.php?id=5189
http://myvisualdatabase.com/forum/viewtopic.php?id=5032
http://myvisualdatabase.com/forum/viewtopic.php?id=3631
http://myvisualdatabase.com/forum/viewtopic.php?id=3220
http://myvisualdatabase.com/forum/viewtopic.php?id=3174
http://myvisualdatabase.com/forum/viewtopic.php?id=2953
http://myvisualdatabase.com/forum/viewtopic.php?id=1442
http://myvisualdatabase.com/forum/viewtopic.php?id=1440
http://myvisualdatabase.com/forum/viewtopic.php?id=1428
http://myvisualdatabase.com/forum/viewtopic.php?id=1416
https://www.helpndoc.com

	About My Visual Database
	How it works?
	Using DBMS MySQL
	Database design
	Introduction
	Data types
	Database schema

	User interface designer
	Introduction
	Button actions
	Introduction
	Search
	New record
	Save record
	Show record
	Delete record
	SQL query
	Report
	How to print a record
	How to print a simple list
	How to print a master-detail report
	How to print a master-detail report with grouping

	Report (SQL)
	Show form
	Close form
	Open in Excel

	User interface components
	Label
	Button
	Edit
	Filter

	Memo
	RichEdit
	CheckBox
	DateTimePicker
	property Calendar
	property Filter
	property Format

	Calendar
	ComboBox
	property ParentComboBox

	TableGrid
	property AppearanceOptions
	property Options
	property Settings
	Column setting

	Counter
	DBFile
	CopyTo

	DBImage
	TreeView
	property Settings

	Map
	MarkerIcon
	MarkerInfoHTML
	FormMarker

	Image
	PageControl
	GroupBox
	Panel
	property Anchors

	Access control
	Introduction
	Setting up Roles
	Setting up the user interface
	Setting up columns in the TableGrid component
	Access Control to Information
	Users creation

	Web access via browser
	Webgrid

	Script
	Introduction
	Pascal language
	Component Properties, Methods and Events
	Form
	BorderIcons
	BorderStyle
	TControlScrollBar

	Label
	Button
	OnClick

	Edit
	Memo
	RichEdit
	AddHotPicture
	AddHyperlink
	AddNL
	AddPicture
	AddTab
	AddTextNL
	AppendRTFFromStream
	AppendTextA
	AppendText
	AppendTextFromStreamA
	AppendTextFromStream
	GetSelectedImage
	InsertHyperlink
	InsertPicture
	InsertRTFFromStreamEd
	InsertText
	InsertTextEx
	LoadRTFFromStream
	LoadTextA
	LoadText
	LoadTextFromStreamA
	LoadTextFromStream
	SaveDocX
	SaveDocXToStream
	SaveHTML
	SaveHTMLEx
	SaveRTF
	SaveRTFToStream
	SaveTextToStreamA
	SaveTextToStream
	SearchText

	CheckBox
	DateTimePicker
	Calendar
	OnGetMonthBoldInfo

	ComboBox
	TableGrid
	property dbLimit: Integer
	property dbOffSet: Integer
	property dbSQL: string
	property dbPopupMenu: TPopupMenu
	property Cell[x,y]: TCell
	property Columns: TNxColumns
	property Columns[i]: TNxCustomColumn
	property Footer: TColumnFooter
	property Header: TColumnHeader
	property Options: TColumnOptions

	property HorzScrollBar: TNxScrollBar
	property VertScrollBar: TNxScrollBar
	property Options: TGridOptions
	property Row[i]: TRow
	procedure BestFitColumns(BestFitMode: TBestFitMode = bfCells)
	procedure BestFitRow(const Index: Integer)
	procedure OnApplyEditText (Sender: TObject; ACol, ARow: Integer; var Value: String)
	procedure OnAfterEdit(Sender: TObject; ACol, ARow: Integer; Value: String)
	procedure OnBeforeEdit(Sender: TObject; ACol, ARow: Integer; var Accept: Boolean)
	procedure OnCellClick(Sender: TObject; ACol, ARow: Integer)
	procedure OnEditAccept(Sender: TObject; ACol, ARow: Integer; Value: String; var Accept: Boolean)
	procedure OnInputAccept(Sender: TObject; var Accept: Boolean)
	procedure OnRowMove(Sender: TObject; FromPos, ToPos: Integer; var Accept: Boolean)

	Counter
	DBFile
	DBImage
	TreeView
	property dbPopupMenu: TPopupMenu
	property Cell[x,y]: TCell
	property Columns: TNxColumns
	property Columns[i]: TNxCustomColumn
	property Footer: TColumnFooter
	property Header: TColumnHeader
	property Options: TColumnOptions

	property HorzScrollBar: TNxScrollBar
	property VertScrollBar: TNxScrollBar
	property Options: TGridOptions
	property Row[i]: TRow
	procedure BestFitColumns(BestFitMode: TBestFitMode = bfCells)
	procedure BestFitRow(const Index: Integer)
	procedure OnCellClick(Sender: TObject; ACol, ARow: Integer)

	Map
	type TMarkerIconColor
	type TErrorType
	class TBounds
	property Markers: TMakers
	property Markers[i]: TMarker
	property MapLabel: TMapLabel

	property Polylines: TPolylines
	property Polylines[i]: TPolylineItem
	property Path: TPath
	property Path[i]: TPathItem

	property Polygons: TPolygons
	property Polygons[i]: TPolygonItem
	property MapOptions: TMapOptions
	function GetElevation (Latitude, Longitude: Double): Boolean
	function GetElevation2 (Path: TPath; ResultCount: Integer = 2): Boolean
	function DegreesToLonLat (StrLon, StrLat: String; var Lon, Lat: Double): Boolean
	function LoadGeoJSONPolyline (AFilename: string; AColor: TColor = clBlue; Opacity: Integer = 255; AWidth: Integer = 2; Zoom: Boolean = True; HoverColor: TColor = clBlue): string
	function LoadGeoJSONPolygon
	function OpenMarkerInfoWindowHtml (Id: Integer; HtmlText:String): Boolean
	function ScreenShot (ImgType: TImgType): TGraphic

	Image
	property Picture: TPicture

	PageControl
	class TTabSheet

	GroupBox
	Panel

	Classes
	TCanvas
	TFont
	TSizeConstraints
	TStringList

	Types
	TColor
	TCursor
	TDateTime

	Examples
	Components
	Examples with the Map component
	Examples with the Calendar component
	Examples with the TableGrid component
	Examples with the TreeView component
	Examples with the DBFile component
	Examples with the DBImage component
	Examples with the Button component
	Examples with the Counter component

	Database
	Files
	Internet
	Report
	Others

